When white light is diffracted and blue color is seen is due to the absorbance of wavelength of all other color except blue.
<u>Explanation:
</u>
- The white light diffracts into rainbow colors which are the 7 colors present in form of VIBGYOR.
- VIBGYOR is the violet, Indigo, Blue, Green, Yellow, Orange and Red.
- When the blue color is seen denotes the shortest wavelength being reflected and all other being absorbed at the specified location.
Answer:
a
Explanation:
<u>In order to maintain speed, a moving object or person must move at a constant velocity</u>. Accelerating will increase the speed while decelerating will reduce the speed.
Hence, for Bolt to be able to maintain the top speed for a few seconds, he needs to move at a constant velocity.
The correct option is a.
-- find the horizontal and vertical components of F1.
-- find the horizontal and vertical components of F2.
-- find the horizontal and vertical components of F3.
-- add up the 3 horizontal components; their sum is the horizontal component of the resultant.
-- add up the 3 vertical components; their sum is the vertical component of the resultant.
-- the magnitude of the resultant is the square root of (vertical component^2 + horizontal component^2)
-- the direction of the resultant is the angle whose tangent is (vertical component/horizontal component), starting from the positive x-direction.
The distance between Mars and the Sun in the scale model would be 1140 m
Explanation:
In this scale model, we have:
represents an actual distance of

The actual distance between Mars and the Sun is 228 million km, therefore

On the scale model, this would corresponds to a distance of
.
Therefore, we can write the following proportion:

And solving for
, we find:

Learn more about distance:
brainly.com/question/3969582
#LearnwithBrainly
Answer:
F = - k (x-xo) a graph of the weight or applied force against the elongation obtaining a line already proves Hooke's law.
Explanation:
The student wants to prove hooke's law which has the form
F = - k (x-xo)
To do this we hang the spring in a vertical position and mark the equilibrium position on a tape measure, to simplify the calculations we can make this point zero by placing our reference system in this position.
Now for a series of known masses let's get them one by one and measure the spring elongation, building a table of weight vs elongation,
we must be careful when hanging the weights so as not to create oscillations in the spring
we look for the mass of each weight
W = mg
m = W / g
and we write them in a new column, we make a graph of the weight or applied force against the elongation and it should give a straight line; the slope of this line is sought, which is the spring constant.
The fact of obtaining a line already proves Hooke's law.