Answer:
10.6 s
Explanation:
Given that a girl is running the 200 m dash. She starts by acceleration at 8m/s^2 for 7s. Then continues at this speed until the end of the race. How long did it take for her to complete the race?
Solution.
If she accelerated for 7s, the velocity at which she accelerated will be:
Acceleration = velocity/time
8 = V/7
Make V the subject of the formula by cross multiplying.
V = 8 × 7
V = 56 m/s
She maintains the speed through out the journey.
Speed = distance/time
Make time the subject of formula
Time = distance/speed
Time = 200 / 56
Time = 3.57s
Therefore, she will complete the race by 7 + 3.6 = 10.6 s
Answer:
acceleration = 0.2625 m/s²
Explanation:
acceleration = ( final velocity - initial velocity ) / time
Here the final velocity is 10.6 m/s and initial velocity is 6.4 m/s and time is 16 s.
using the equation:
acceleration = ( 10.6 - 6.4 ) / 16
= 0.2625 m/s²
When you say full valence shell, are you talking about a valence electron shell?
I am learning about atoms and i know a little bit
<h2>
Answer: The half-life of beryllium-15 is 400 times greater than the half-life of beryllium-13.</h2>
Explanation:
The half-life
of a radioactive isotope refers to its decay period, which is the average lifetime of an atom before it disintegrates.
In this case, we are given the half life of two elements:
beryllium-13: 
beryllium-15: 
As we can see, the half-life of beryllium-15 is greater than the half-life of beryllium-13, but how great?
We can find it out by the following expression:

Where
is the amount we want to find:


Finally:

Therefore:
The half-life of beryllium-15 is <u>400 times greater than</u> the half-life of beryllium-13.
Answer:
2.5 x 10^{5} J
Explanation:
weight = 5,000 N
coefficient of friction = 0.05
distance = 1000 m
how much work is done by the dogs pulling the sledge
work done = force x coefficient of friction x distance
work done = 5000 x 0.05 x 1000 = 2.5 x 10^{5} J