Momentum before the hit:
p = mv = 0.01 * 300 + 1 * 0
Momentum after the hit:
p = 0.01 * 150 + 1 * v
Momentum is conserved:
0.01 * 300 = 0.01 * 150 + v
3 = 1.5 + v
v = 1.5
The velocity of the block after the collision is 1.5 m/s.
Answer:
The ratio of the orbital time periods of A and B is 
Solution:
As per the question:
The orbit of the two satellites is circular
Also,
Orbital speed of A is 2 times the orbital speed of B
(1)
Now, we know that the orbital speed of a satellite for circular orbits is given by:

where
R = Radius of the orbit
Now,
For satellite A:

Using eqn (1):
(2)
For satellite B:
(3)
Now, comparing eqn (2) and eqn (3):

Makes no sense get a better question
The potential energy= mass times gravity times height. However, we are missing height. Gravity is a constant that is 9.8 on Earth. We then solve for height by dividing 350 by 10 and then 9.8 to get about 3.5.
TLDR: 3.5