Using Kepler's 3rd law which is: T² = 4π²r³ / GM
Solved for r :
r = [GMT² / 4π²]⅓
Where G is the universal gravitational constant,M is the mass of the sun,T is the asteroid's period in seconds, andr is the radius of the orbit.
Change 5.00 years to seconds :
5.00years = 5.00years(365days/year)(24.0hours/day)(6... = 1.58 x 10^8s
The radius of the orbit then is computed:
r = [(6.67 x 10^-11N∙m²/kg²)(1.99 x 10^30kg)(1.58 x 10^8s)² / 4π²]⅓ = 4.38 x 10^11m
When a cold air <span>mass replaces a warm air mass, this is called a cold front. Some characteristics of a called front before passing are winds coming from south or southwest area, warm temperature, falling pressure, and drizzles. When it passes, the winds are shifting, there is a sudden drop of temperature, minimum pressure followed by a sharp rise. After passing, the winds head to the west or northwest area, temperature is steadily dropping and the pressure is rising steadily.</span>
velocity = traveled distance ÷ time of the traveled distance is seconds
velocity = 600 ÷ 60
velocity = 10 m/s
_________________________________
Kinetic Energy = 1/2 × mass × ( velocity )^2
KE = 1/2 × 60 × ( 10 )^2
KE = 30 × 100
KE = 3000 j
The big bang theory refers to a theoretical concept that explains the creation of our universe. It postulates that the universe started with a giant explosion that created all matter and propelled it outwards in all directions. It is the existence of cosmic background radiation that supports the big bang theory within cosmology.
Media 1 and 2 are air and liquid. By Snell's law;
n1/n2 = Sin ∅2/Sin ∅1
Then,
n2 = (n1* Sin Ф1)/Sin ∅2 = (1*Sin 31.7)/Sin 21.3 = 1.4466.
When the light travels in the opposite direction and at critical angle, media 1 and 2 are liquid and air respectively while ∅2 = 90°
Therefore,
n1/n2 = Sin 90 / Sin ∅c => ∅c = Sin ^-1[n2*Sin 90]/n1 = Sin ^-1[1*Sin 90]/1.4466 = 43.73°
The critical angle (∅c) is 43.73°.