Answer:
p = 20 kg•m/s
KE = 100 J
Explanation:
In an elastic collision of identical masses, the two masses will exchange momentums. Therefore Block 1 initially moving at 10 m/s will be moving at 2 m/s, and Block 2 will go from 2 m/s to 10 m/s
momentum = mv = 2(10) = 20 kg•m/s
KE = ½mv² = ½(2)10² = 100 J
Unfortunately, your answer selection does not have this answer as an option.
Arrhenius' equation relates the dependence of rate constant of a chemical reaction to the temperature. The equation below is the Arrhenius equation

where k is the rate constant, T is the absolute temperature. As the temperature of the system increases, the rate constant also increases and vice versa.
Answer:
Δt = 5.85 s
Explanation:
For this exercise let's use Faraday's Law
emf =
- d fi / dt
= B. A
\phi = B A cos θ
The bold are vectors. It indicates that the area of the body is A = 0.046 m², the magnetic field B = 1.4 T, also iindicate that the normal to the area is parallel to the field, therefore the angle θ = 0 and cos 0 =1.
suppose a linear change of the magnetic field
emf = - A 
Dt = - A 
the final field before a fault is zero
let's calculate
Δt = - 0.046 (0- 1.4) / 0.011
Δt = 5.85 s
Answer:
No.
Explanation:
Given the following :
Velocity (V) of ball = 5m/s
Radius = 1m
Can the ball reach the highest point of the circular track
of radius 1.0 m?
The highest point in the track could be considered as the diameter of the circle :
Radius = diameter / 2;
Diameter = (2 * Radius) = (2*1) = 2
Maximum height which the ball can reach :
Using the relation :
Kinetic Energy = Potential Energy
0.5mv^2 = mgh
0.5v^2 = gh
0.5(5^2) = 9.8h
0.5 * 25 = 9.8h
12.5 = 9.8h
h = 12.5 / 9.8
h = 1.2755
h = 1.26m
Therefore maximum height which can be reached is 1.26m.
Since h < Diameter
1350kgm/s
Explanation:
Given parameters:
Mass of Sam = 75kg
Velocity = 18m/s
Unknown:
Momentum = ?
Solution:
Momentum is the property of a moving body with respect to its mass and velocity.
Objects in motion have momentum. The more the velocity of a body, the more its momentum. Also, the more the mass of an object, the more momentum it possess.
Momentum is a function of the mass and the velocity of a body
Momentum = mass x velocity
Momentum = 75 x 18 = 1350kgm/s
learn more:
Conservation of momentum brainly.com/question/2990238
#learnwithBrainly