Answer:It can run in the same direction but it increases its speed.
Explanation:
Answer:
Are you trying to calculate the net force?
If so, it would be 3 N Up.
This is because the 15 N forces from the left and right cancel out, leaving only the upwards 15 N force, and the 12 N force. However, we have to subtract 12 from 15, leaving the final net force to be 3 N Up.
Let me know if this helps!
Complete question:
A child sits in a wagon with a pile of 0.64-kg rocks. If she can throw each rock with a speed of 7.5 m/s relative to the ground, causing the wagon to move, how many rocks must she throw per minute to maintain a constant average speed against a 3.9-N force of friction
Answer:
The number of rocks per minutes thrown is 49 rocks/min
Explanation:
Given;
mass of the rock, m = 0.64 kg
speed of the rock, v = 7.5 m/s
frictional force,
= 3.9 N
For an object to move at a constant speed, the applied force must be equal to the frictional force.

where;
is the applied force
N/t is the number of rocks per minutes thrown
Substitute the given parameters;

Approximately 49 rocks/min
Answer:
7.53 km
Explanation:
We at given;
Speed of runner; v_r = 8.5 km/hr
Speed of bird; v_y = 17 km/hr
L = 6.4 km
We know that; time = distance/speed.
We are told that the bird starts from 6.4 km from the start and that it flies back to meet the runner after it reaches the finish line. If the total distance back to the runner is x, it means bird distance is 6.4 + (6.4 - x) = 12.8 - x
Thus;
Time of bird(t_y) = (12.8 - x)/17
Thus,
Time of runner(t_r) = x/8.5 hr
To find x, we have to equate the times of the runner and the bird.
Thus;
x/8.5 = (12.8 - x)/17
Multiply both sides by 17 to get;
2x = 12.8 - x
2x + x = 12.8
3x = 12.8
x = 12.8/3
x = 4.27 km
Thus, cumulative distance traveled by bird is; 12.8 - 4.27 = 7.53 km