Answer:
460.52 s
Explanation:
Since the instantaneous rate of change of the voltage is proportional to the voltage in the condenser, we have that
dV/dt ∝ V
dV/dt = kV
separating the variables, we have
dV/V = kdt
integrating both sides, we have
∫dV/V = ∫kdt
㏑(V/V₀) = kt
V/V₀ = 
Since the instantaneous rate of change of the voltage is -0.01 of the voltage dV/dt = -0.01V
Since dV/dt = kV
-0.01V = kV
k = -0.01
So, V/V₀ = 
V = V₀
Given that the voltage decreases by 90 %, we have that the remaining voltage (100 % - 90%)V₀ = 10%V₀ = 0.1V₀
So, V = 0.1V₀
Thus
V = V₀
0.1V₀ = V₀
0.1V₀/V₀ = 
0.1 = 
to find the time, t it takes the voltage to decrease by 90%, we taking natural logarithm of both sides, we have
㏑(0.01) = -0.01t
So, t = ㏑(0.01)/-0.01
t = -4.6052/-0.01
t = 460.52 s
<span>10 times as much. Since F=m*a, and a is constant, the only thing that affects force is the mass.
In response to the below answer, the acceleration due to gravity does not change. The force due to gravity definitely DOES change depending on the mass of the object. Since the force is what the problem asks for, the answer is 10</span>
Answer:The answer is (60 mph - 0 mph) / 8s = (26.8224 m/s - 0 m/s) / 8s = 3.3528 m/s 2 (meters per second squared) average acceleration. That would be 27,000 miles per hour squared.
Explanation:
Answer:
Hydrated iron(III) oxide, or ferric oxide
Explanation:
Add different quantities of water to three potted plants