Answer:
15.7m/s
Explanation:
To solve this problem, we use the right motion equation.
Here, we have been given the height through which the ball drops;
Height of drop = 14.5m - 1.9m = 12.6m
The right motion equation is;
V² = U² + 2gh
V is the final velocity
U is the initial velocity = 0
g is the acceleration due to gravity = 9.8m/s²
h is the height
Now insert the parameters and solve;
V² = 0² + 2 x 9.8 x 12.6
V² = 246.96
V = √246.96 = 15.7m/s
The minimum average speed it must have in the second half of the event in order to qualify is 414.7 km/h.
<h3>
What is average speed?</h3>
The average speed of an object is the ratio of total distance traveled by the object to the total time of motion of the object.
<h3>Total time taken by the car during the entire race</h3>
time = distance/average speed
time = (1.41 km) / (278 km/h)
time = 0.0051 hr
The car travels the first half of the race, d (¹/₂ x 1410 m) at 210 km/h;
d = 705 m = 0.705 km
t1 = 0.705/210
t1 = 0.0034 hr
<h3>time for the second half</h3>
t2 = 0.0051 - 0.0034 hr
t2 = 0.0017 hr
<h3>minimum average speed of the second half</h3>
v = d/t
v = 0.705 km / 0.0017 hr
v = 414.7 km/hr
Thus, the minimum average speed it must have in the second half of the event in order to qualify is 414.7 km/h.
Learn more about average speed here: brainly.com/question/4931057
#SPJ1
Answer:
Tc=0
Explanation:
The condition to have 100% efficiency is e=1-Tc/TH=1, so Tc/TH=0, As TH is different of zero we can conclude
Tc=0 Kelvins.
None of the libraries have up to 3000 brand new books