1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vika [28.1K]
3 years ago
14

What is the inverse of the function below?

Mathematics
2 answers:
Vadim26 [7]3 years ago
6 0

f(x) = \ln(10x)\\ \\ f^{-1}\Big(f(x)\Big) =x \\ \\ f^{-1}\Big(\ln(10x)\Big) = x\\ \\ \ln(10x) = t \Rightarrow 10x = e^t \Rightarrow x = \dfrac{e^t}{10} \\ \\ \Rightarrow f^{-1}(t) = \dfrac{e^t}{10} \Rightarrow \boxed{f^{-1}(x) = \dfrac{e^x}{10}}

S_A_V [24]3 years ago
4 0
<h2>Hello!</h2>

The answer is:

The correct option is:

c) f^{-1}(x)=\frac{e^{x}}{10}

<h2>Why?</h2>

Inversing a function means switching the range and domain of the function. To inverse a function we need to rewrite the variable (x) with the function (f(x) or y), and rewrite the function (f(x) or y) with the variable (x), and then, isolate "y" or "f(x)".

Also, we need to remember how to isolate the variable from a logarithmic function.

ln(x)=a\\\\e^{a}=e^{ln(x)}\\\\e^{a}=x

So, we are given the function:

f(x)=ln(10x)

Which it's equal to write:

y=ln(10x)

Then, inversing the function we have:

y=ln(10x)

x=ln(10y)

x=ln(10y)\\\\e^{x}=e^{ln(10y)} \\e^{x}=10y\\\\y=\frac{e^{x}}{10}

Hence, we have that the correct answer is the option:

c) f^{-1}(x)=\frac{e^{x}}{10}

Have a nice day!

You might be interested in
A common assumption in modeling drug assimilation is that the blood volume in a person is a single compartment that behaves like
mixas84 [53]

Answer:

a) \mathbf{\dfrac{dx}{dt} = 30 - 0.015 x}

b) \mathbf{x = 2000 - 2000e^{-0.015t}}

c)  the  steady state mass of the drug is 2000 mg

d) t ≅ 153.51  minutes

Step-by-step explanation:

From the given information;

At time t= 0

an intravenous line is inserted into a vein (into the tank) that carries a drug solution with a concentration of 500

The inflow rate is 0.06 L/min.

Assume the drug is quickly mixed thoroughly in the blood and that the volume of blood remains constant.

The objective of the question is to calculate the following :

a) Write an initial value problem that models the mass of the drug in the blood for t ≥ 0.

From above information given :

Rate _{(in)}= 500 \ mg/L  \times 0.06 \  L/min = 30 mg/min

Rate _{(out)}=\dfrac{x}{4} \ mg/L  \times 0.06 \  L/min = 0.015x \  mg/min

Therefore;

\dfrac{dx}{dt} = Rate_{(in)} - Rate_{(out)}

with respect to  x(0) = 0

\mathbf{\dfrac{dx}{dt} = 30 - 0.015 x}

b) Solve the initial value problem and graph both the mass of the drug and the concentration of the drug.

\dfrac{dx}{dt} = -0.015(x - 2000)

\dfrac{dx}{(x - 2000)} = -0.015 \times dt

By Using Integration Method:

ln(x - 2000) = -0.015t + C

x -2000 = Ce^{(-0.015t)

x = 2000 + Ce^{(-0.015t)}

However; if x(0) = 0 ;

Then

C = -2000

Therefore

\mathbf{x = 2000 - 2000e^{-0.015t}}

c) What is the steady-state mass of the drug in the blood?

the steady-state mass of the drug in the blood when t = infinity

\mathbf{x = 2000 - 2000e^{-0.015 \times \infty }}

x = 2000 - 0

x = 2000

Thus; the  steady state mass of the drug is 2000 mg

d) After how many minutes does the drug mass reach 90% of its stead-state level?

After 90% of its steady state level; the mas of the drug is 90% × 2000

= 0.9 × 2000

= 1800

Hence;

\mathbf{1800 = 2000 - 2000e^{(-0.015t)}}

0.1 = e^{(-0.015t)

ln(0.1) = -0.015t

t = -\dfrac{In(0.1)}{0.015}

t = 153.5056729

t ≅ 153.51  minutes

4 0
3 years ago
Laurie had three $2 off coupons for the mini-golf course, but everybody else had to pay $9 per person, the full price. What was
Ahat [919]

Answer:

D

Step-by-step explanation:

9x8=71

2x3=6

71-6=66

6 0
3 years ago
Read 2 more answers
Plz give me correct answers ​
son4ous [18]

Answer:

Addition = 3656999

Step-by-step explanation:

Predecessor of number = (Number - 1)

Predecessor of 365000 = 365000 - 1

                                         = 364999

Successor of a number = (Number + 1)

Successor of 3291999 = 3291999 + 1

                                      = 3292000

Now we have have to add the predecessor of 365000 and successor of 3291999,

364999 + 3292000 = 3656999

In other words addition of predecessor of any number and successor of other number will be same as the sum of both the numbers.

5 0
3 years ago
(08.02)Which of the following graphs best represents the solution to the pair of equations below?
AnnZ [28]

Answer:  The graph of the two equations is "A coordinate plane is shown with two lines graphed. y = −x − 1

Step-by-step explanation:

4 0
2 years ago
How do i solve this problem?
Eduardwww [97]

I think the first numerator cant be Z so I solved the question assuming it is 2;

Answer:

(x,y,z)=(1,5,7)

Hope this helps.

7 0
3 years ago
Other questions:
  • Solve for z.<br> 5<br> y = ZW - ZC
    15·1 answer
  • The given data set shows the number of books read by eight children in a reading contest. {40, 15, 14, 15, 10, 11, 18, 20} Which
    9·2 answers
  • Choose the linear inequality that describes each graph.
    8·2 answers
  • How many ounces of nuts are there in a box that holds 3.2 pounds
    5·1 answer
  • A map has a scale of 1 cm : 9 km. If two cities are 10 cm apart on the map, what is the actual distance between the cities, to t
    13·1 answer
  • At how many different lines of reflection can you reflect a square onto itself?
    13·1 answer
  • Tony is making a circular, glass tabletop with a radius of 22 inches. Approximately how much glass does he need to make the tabl
    12·1 answer
  • PLEASE HELP VERY URGENT!!!!!!!
    15·1 answer
  • Which of the following expressions is not correctly written in scientific notation?
    12·1 answer
  • Which value is equivalent to the expression 3^2 × 3^3?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!