Answer:
C
Explanation:
Gravity is the main reason that make our planets to pull each other
Answer:
By conservation of energy, it can climb up to a height equal to that it went down before. However, due to the friction in the machines, the total mechanical energy of the roller coaster will decrease. As a result, the first "hill" of many roller coasters are the highest, but the followings will have decreasing heights.
Explanation:
Answer:
S=48.29 m
Explanation:
Given that the height of the hill h = 2.9 m
Coefficient of kinetic friction between his sled and the snow μ = 0.08
Let u be the speed of the skier at the bottom of the hill.
By applying conservation of energy at the top and bottom of the inclined plane we get.
Potential Energy=kinetic Energy
mgh = (1/2) mu²
u² = 2gh
u²=2(9.81)(2.9)
=56.89
u=7.54 m/s
a = - f / m
a = - μ*m*g / m
a = - μg
From equation of motion
v²- u² = 2 -μ g S
v=0 m/s
-(7.54)²=-2(0.06)(9.81)S
S=48.29 m
Answer:
The red ball has a greater kinetic energy, because it has a greater mass
Explanation:
Mass is directly proportional to kinetic energy, as one increases, so does the other
Answer:
0.12 K
Explanation:
height, h = 51 m
let the mass of water is m.
Specific heat of water, c = 4190 J/kg K
According to the transformation of energy
Potential energy of water = thermal energy of water
m x g x h = m x c x ΔT
Where, ΔT is the rise in temperature
g x h = c x ΔT
9.8 x 51 = 4190 x ΔT
ΔT = 0.12 K
Thus, the rise in temperature is 0.12 K.