B, C and E. In radioactive decay unstable atoms stabilize by releasing energy.
Answer:
5.00 mol Mg
10.0 mol Cl
40.0 mol O
Explanation:
Step 1: Given data
Moles of Mg(ClO₄)₂: 5.00 mol
Step 2: Calculate the number of moles of Mg
The molar ratio of Mg(ClO₄)₂ to Mg is 1:1.
5.00 mol Mg(ClO₄)₂ × 1 mol Mg/1 mol Mg(ClO₄)₂ = 5.00 mol Mg
Step 3: Calculate the number of moles of Cl
The molar ratio of Mg(ClO₄)₂ to Cl is 1:2.
5.00 mol Mg(ClO₄)₂ × 2 mol Cl/1 mol Mg(ClO₄)₂ = 10.0 mol Cl
Step 4: Calculate the number of moles of O
The molar ratio of Mg(ClO₄)₂ to Cl is 1:8.
5.00 mol Mg(ClO₄)₂ × 8 mol O/1 mol Mg(ClO₄)₂ = 40.0 mol O
C₄H₉OH + HBr = C₄H₉Br + H2O
Δmole of alcohol gives 1 mole of bromobutanol
HBr is in excess, so the yield of the product is limited by the alcohol
Wt. of 1 butanol = 18
Molar mass of the butanol = 74.12 g/mole
Moles of the alcohol = 1/74.12 = 0.01349 moles
So, moles of bromobutane = 0.01349 moles
Molar mass of C₄H₉Br = 137.018 g/moles
So, theoretical mass of bromobutane is = 0.01349 × 137.0.18
= 1.85 g
<u><em>Answer: Chemical reaction, a process in which one or more substances, the reactants, are converted to one or more different substances, the products.</em></u>
Explanation:
Answer: it honestly depends.
Explanation: