Mass is the amount of matter in an object whereas weight is the force of gravity acting on the mass of an object. Different planets exert a different force of gravity on an object-meaning that an object's weight will change depending on the force of gravity acting on it, but it's mad will remain unchanged.
<span>the mechanical advantage of a pulley is 1.0
</span>
Answer:
Mass of the climber = 69.38 kg
Explanation:
Change in length

Load, P = m x 9.81 = 9.81m
Young's modulus, Y = 0.37 x 10¹⁰ N/m²
Area

Length, L = 15 m
ΔL = 5.1 cm = 0.051 m
Substituting
Mass of the climber = 69.38 kg
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.
Answer:
y_red / y_blue = 1.11
Explanation:
Let's use the constructor equation to find the image for each wavelength
1 /f = 1 /o + 1 /i
Where f is the focal length, or the distance to the object and i the distance to the image
Red light
1 / i = 1 / f - 1 / o
1 / i_red = 1 / f_red - 1 / o
1 / i_red = 1 / 19.57 - 1/30
1 / i_red = 1,776 10-2
i_red = 56.29 cm
Blue light
1 / i_blue = 1 / f_blue - 1 / o
1 / i_blue = 1 / 18.87 - 1/30
1 / i_blue = 1,966 10-2
i_blue = 50.863 cm
Now let's use the magnification ratio
m = y ’/ h = - i / o
y ’= - h i / o
Red Light
y_red ’= - 5 56.29 / 30
y_red ’= - 9.3816 cm
Light blue
y_blue ’= 5 50,863 / 30
y_blue ’= - 8.47716 cm
The ratio of the height of the two images is
y_red ’/ y_blue’ = 9.3816 / 8.47716
y_red / y_blue = 1,107
y_red / y_blue = 1.11