1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iragen [17]
3 years ago
10

A wave transfers _______ as it moves away from the source.

Physics
1 answer:
stiks02 [169]3 years ago
7 0

Answer:

A wave transfers energy as it moves away from the source.

Explanation:

A wave transfers energy as it moves away from the source. A wave is known to be a disturbance that travels through a medium and transfer energy from a point to the other without causing any permanent displacement of the medium itself.

Let's take water as an example of a medium through which wave is transfered. As the water moves away from its source, the wave generates energy. The wave produces a motion which leads to transfer of kinetic energy as the medium moves from its source since kinetic energy is the energy acquired by a body by virtue of its motion.

You might be interested in
Calcula qué tan lejos está Saturno del Sol, sabiendo que la luz solar necesita una hora y veinte segundos para llegar a Saturno.
Ksju [112]

Answer:

mi gusta

Explanation:

6 0
3 years ago
What is the first step in the formation of a protostar?
Fittoniya [83]

Star formation begins in relatively small molecular clouds called dense cores.[7] Each dense core is initially in balance between self-gravity, which tends to compress the object, and both gas pressure and magnetic pressure, which tend to inflate it. As the dense core accrues mass from its larger, surrounding cloud, self-gravity begins to overwhelm pressure, and collapse begins. Theoretical modeling of an idealized spherical cloud initially supported only by gas pressure indicates that the collapse process spreads from the inside toward the outside.[8] Spectroscopic observations of dense cores that do not yet contain stars indicate that contraction indeed occurs. So far, however, the predicted outward spread of the collapse region has not been observed.[9]

The gas that collapses toward the center of the dense core first builds up a low-mass protostar, and then a protoplanetary disk orbiting the object. As the collapse continues, an increasing amount of gas impacts the disk rather than the star, a consequence of angular momentum conservation. Exactly how material in the disk spirals inward onto the protostar is not yet understood, despite a great deal of theoretical effort. This problem is illustrative of the larger issue of accretion disk theory, which plays a role in much of astrophysics.

Regardless of the details, the outer surface of a protostar consists at least partially of shocked gas that has fallen from the inner edge of the disk. The surface is thus very different from the relatively quiescent photosphere of a pre-main sequence or main-sequence star. Within its deep interior, the protostar has lower temperature than an ordinary star. At its center, hydrogen is not yet undergoing nuclear fusion. Theory predicts, however, that the hydrogen isotope deuterium is undergoing fusion, creating helium-3. The heat from this fusion reaction tends to inflate the protostar, and thereby helps determine the size of the youngest observed pre-main-sequence stars.[11]

The energy generated from ordinary stars comes from the nuclear fusion occurring at their centers. Protostars also generate energy, but it comes from the radiation liberated at the shocks on its surface and on the surface of its surrounding disk. The radiation thus created most traverse the interstellar dust in the surrounding dense core. The dust absorbs all impinging photons and reradiates them at longer wavelengths. Consequently, a protostar is not detectable at optical wavelengths, and cannot be placed in the Hertzsprung-Russell diagram, unlike the more evolved pre-main-sequence stars.

The actual radiation emanating from a protostar is predicted to be in the infrared and millimeter regimes. Point-like sources of such long-wavelength radiation are commonly seen in regions that are obscured by molecular clouds. It is commonly believed that those conventionally labeled as Class 0 or Class I sources are protostars.[12][13] However, there is still no definitive evidence for this identification.

4 0
3 years ago
HELP ASAP
kipiarov [429]

Answer:

This can be part of your paragraph.

Explanation:

From the cornea, the light passes through the pupil. The iris, or the colored part of your eye, controls the amount of light passing through. From there, it then hits the lens. This is the clear structure inside the eye that focuses light rays onto the retina.

4 0
2 years ago
What is the time constant of a series circuit where the capacitor is 0.330μF and the resistor is 10Ω ?
PtichkaEL [24]

Answer:

\tau=3.3*10^{-6}s

Explanation:

Take at look to the picture I attached you, using Kirchhoff's current law we get:

C*\frac{dV}{dt}+\frac{V}{R}=0

This is a separable first order differential equation, let's solve it step by step:

Express the equation this way:

\frac{dV}{V}=-\frac{1}{RC}dt

integrate both sides, the left side will be integrated from an initial voltage v to a final voltage V, and the right side from an initial time 0 to a final time t:

\int\limits^V_v {\frac{dV}{V} } =-\int\limits^t_0 {\frac{1}{RC} } \, dt

Evaluating the integrals:

ln(\frac{V}{v})=e^{\frac{-t}{RC} }

natural logarithm to both sides in order to isolate V:

V(t)=ve^{-\frac{t}{RC} }

Where the term RC is called time constant and is given by:

\tau=R*C=10*(0.330*10^{-6})=3.3*10^{-6}s

3 0
2 years ago
A SMART car can accelerate from rest to a speed of 28 m/s in 20s. What distance does it travel in this time?
sashaice [31]
Speed= distance/ time so distance = speed * time= 28 * 20= 560m .. so the answer is 560m.. l hope it helped :)
6 0
2 years ago
Other questions:
  • On an essentially frictionless, horizontal ice rink, a skater moving at 5.0 m/s encounters a rough patch that reduces her speed
    10·1 answer
  • A sample of the inert gas krypton has its pressure tripled. if the original volume is 12 l, what is the final volume in l
    10·1 answer
  • Which type of circuit has two or more branches for the current to flow through?
    12·1 answer
  • Temperature difference in the body. The surface temperature of the body is normally about 7.00 ∘C lower than the internal temper
    9·1 answer
  • Cardiovascular health is not influenced by bad cholesterol low density lipids true or false
    15·1 answer
  • A car is traveling at 19m/s. It slows to a stop at a constant rate over 4.2 seconds. How far did the car travel during the 4.2se
    8·1 answer
  • What is the force of an object in free fall
    8·2 answers
  • Starting from rest, a coin and a ring roll down a ramp without slipping. Which of the following are true:
    5·1 answer
  • Two charged spheres 10 cm apart attract each other with a force of 3.0 x 10^-6 N. What electrostatic force will result if both c
    5·1 answer
  • A car of mass 1200Kilograms moving at 15 m/s the driver applies the brakes for 0.08 seconds and the castles down to 10 meter per
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!