p=mv so wouldn't u multiply them?
Answer:
emf will also be 10 times less as compared to when it has fallen 
Explanation:
We know, from faraday's law-

and 
So, as the height increases the velocity with which it will cross the ring will also increase. 
Given


Now, from 

From equation a and b we see that velocity when dropped from
is 10 times greater when height is 40
so, emf will also be 10 times less as compared to when it has fallen 
Answer:

Decrease
Explanation:
I = Current = 3.7 A
e = Charge of electron = 
n = Conduction electron density in copper = 
= Drift velocity of electrons
r = Radius = 1.23 mm
Current is given by

The drift speed of the electrons is 

From the equation we can see the following

So, if the number of conduction electrons per atom is higher than that of copper the drift velocity will decrease.
To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy
is smaller than 
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object
Answer:
a) The electric field at that point is
newtons per coulomb.
b) The electric force is
newtons.
Explanation:
a) Let suppose that electric field is uniform, then the following electric field can be applied:
(1)
Where:
- Electric field, measured in newtons per coulomb.
- Electric force, measured in newtons.
- Electric charge, measured in coulombs.
If we know that
and
, then the electric field at that point is:


The electric field at that point is
newtons per coulomb.
b) If we know that
and
, then the electric force is:



The electric force is
newtons.