I searched it up on Google and I got 473.176 Hope this helps.
High temperature and pressure produce the highest rate of reaction. However, this must be balanced with the high cost of the energy needed to maintain these conditions. Catalysts increase the rate of reaction without affecting the yield. This can help create processes which work well even at lower temperatures.
I hope this helps you.
The number is 25. The square root of 25 is 5 and 5x2 is 10 and then 10+5 is 15
From the information given, the total volume of rubbing alcohol is 88.2 ml
68.6 % of this volume is isopropanol.
We will assume 88.2 ml represents 100% volume, so the volume of water will be 31.4 %
The volume of isopropanol is
68.6/100 x 88.2 → 0.686 × 88.2 = 60.505 ml
The volume of isopropanol is 60.5 ml.
Volume of water will be 88.20 - 60.5 = 27.7 ml
(27.7 / 88.2 × 100 = 31.4% )
Adding 60.5 ml of isopropanol to 27.7 ml of water to make up 88.2 ml will give 68.6 % v/v isopropanol to water solution.
Answer:
2.03125g of acetylene
Explanation:
First thing's first, we have to write out the balanced chemical equation;
CaC2(s) + 2H2O(l) → Ca(OH)2(aq) + C2H2(g)
Water is in excess, so CAC2 is our limiting reactant. i.e it determines the amount of product that would be formed.
1 mol of CaC2 produces 1 mol of C2H2
In terms of mass;
Mass = Number of moles * Molar mass
where the molar mass of the elements are;
Ca = 40g/mol
C = 12g/mol
H = 1g/mol
CaC2 = 40+ (2*12) = 64g/mol
C2H2 =( 2 * 12) + ( 2 * 1) = 26g/mol
64g (1 * 64g/mol) of CaC2 produces 26g ( 1mol * 26g/mol) of C2H2
5g would produce x?
64 = 26
5 = x
Upon solving for x we have;
x = (5 * 26) / 64
x = 2.03125g