Kinetic energy , KE= [1/2]m*v^2
m = 10 kg
v=20m/s
KE = [1/][(10kg)(20m/s)^2 = [1/2](10kg)(400m^2/s^2) = 2000 joule
Answer: 2000 joule
Answer:
Four charges of equal magnitude sitting at the vertices of a square
Explanation:
We can arrive at such a situation by thinking of a simple example first, a configuration of two charges. The force acting on the middle point of a straight line joining the two points(charges) will be zero. That is, the net Electric field will be zero as they cancel out being equal in magnitude and opposite in direction.
Now, we can extend this idea to a square having charge q at each vertex. If we put 'p' at the geometric center, we can see that the Electric fields along the diagonals cancel out due to the charges at the diagonally opposite vertices(refer to the figure attached). Actually, the only requirement is that the diagonally opposite charges are equal.
We can further take this to 3 dimensions. Consider a cube having charges of equal magnitude at each vertex. In this case, the point 'p' will yet again be the geometric center as the Electric field due to the diagonally opposite charges will cancel out.
Answer:
The skin releases sweat
Explanation:
The body temperature is necessary to maintain homeostasis. Skin controls body temperature by sweating when it is too heated.
Answer:
Evaporation
Explanation:
Evaporation is a form of mass tranfer phenomena where by water are moved from the earth surface into the atmosphere as vapours,it is path of the water cycle a decription of the path moved by land water until it turns into rain, humidity,air and temperature are factors that influence evaporation though evaporation can happen at all temperature
Answer: The end point of a spring oscillates with a period of 2.0 s when a block with mass m is attached to it. When this mass is increased by 2.0 kg, the period is found to be 3.0 s. Then the mass m is 0.625kg.
Explanation: To find the answer, we need to know more about the simple harmonic motion.
<h3>
What is simple harmonic motion?</h3>
- A particle is said to execute SHM, if it moves to and fro about the mean position under the action of restoring force.
- We have the equation of time period of a SHM as,

- Where, m is the mass of the body and k is the spring constant.
<h3>How to solve the problem?</h3>

- We have to find the value of m,


Thus, we can conclude that, the mass m will be 0.625kg.
Learn more about simple harmonic motion here:
brainly.com/question/28045110
#SPJ4