Answer:
The final temperature of the gas is <em>114.53°C</em>.
Explanation:
Firstly, we calculate the change in internal energy, ΔU from the first law of thermodynamics:
ΔU=Q - W
ΔU = 1180 J - 2020 J = -840 J
Secondly, from the ideal gas law, we calculate the final temperature of the gas, using the change in internal energy:


Then we make the final temperature, T₂, subject of the formula:



Therefore the final temperature of the gas, T₂, is 114.53°C.
Trick question? In order to have kinetic energy, an object must be moving. Therefore, in this case, kinetic energy would be 0. If it were asking about potential energy, it would be a different story.
Answer:
your answer is B. The velocity could be in any direction, but the acceleration is in the direction of the resultant force
Answer:
Build Your Confidence
Check your grammar, spelling, and punctuation instantly with Grammarly
advertisement
grammarly.comBuild Your Confidence
Check your grammar, spelling, and punctuation instantly with Grammarly
advertisement
grammarly.com
Explanation:
Answer:
q = 8.61 10⁻¹¹ m
charge does not depend on the distance between the two ships.
it is a very small charge value so it should be easy to create in each one
Explanation:
In this exercise we have two forces in balance: the electric force and the gravitational force
F_e -F_g = 0
F_e = F_g
Since the gravitational force is always attractive, the electric force must be repulsive, which implies that the electric charge in the two ships must be of the same sign.
Let's write Coulomb's law and gravitational attraction
In the exercise, indicate that the two ships are identical, therefore the masses of the ships are the same and we will place the same charge on each one.
k q² = G m²
q =
m
we substitute
q =
m
q =
m
q = 0.861 10⁻¹⁰ m
q = 8.61 10⁻¹¹ m
This amount of charge does not depend on the distance between the two ships.
It is also proportional to the mass of the ships with the proportionality factor found.
Suppose the ships have a mass of m = 1000 kg, let's find the cargo
q = 8.61 10⁻¹¹ 10³
q = 8.61 10⁻⁸ C
this is a very small charge value so it should be easy to create in each one