Answer:
40.7062 °C
Explanation:
Let the initial temperature = x °C
Boiling temperature of water = 100 °C
Using,
Q = m C ×ΔT
Where,
Q is the heat absorbed in the temperature change from x °C to 100 °C.
C gas is the specific heat of the water = 4.184 J/g °C
m is the mass of water
ΔT = (100 - x) °C
Given,
Mass = 2350 g
Q = 5.83 × 10⁵ J
Applying the values as:
Q = m C ×ΔT
5.83 × 10⁵ = 2350 × 4.184 × (100 - x)
<u>x, Initial temperature = 40.7062 °C </u>
The answer is C because you don’t have to worry about the number in front of the decimal unless it is something greater than zero. A- Doesn’t have there sig figs. B- The zero after the 5 doesn’t change it. D- The three at the end doesn’t matter because it does not round it up.
Answer:
A Walk in the City
Make a list of the number of cars, jeeps, tricycle, and even trucks you've seen on your way to school. On a Decision Making Chart, answer the question, "Does the volume of traffic affect the air quality in my local community?" Write your reasons for saying YES on the Reasons for column, and the reasons for saying NO on the Reasons Against column. At the bottom of a chart, make a position by writing your decision on the same question.
Decision Making Chart
[question]
[reason for]
[reason against]
[my decision]
Answer:
The statement describes a process involved in the evolution of Earth’s early atmosphere would be:
Cyanobacteria transformed carbon dioxide in the atmosphere into oxygen during photosynthesis
Hope it helped :3
Answer:
This question is incomplete, here's the complete question:
<em><u>"Suppose 0.0842g of potassium sulfate is dissolved in 50.mL of a 52.0mM aqueous solution of sodium chromate. Calculate the final molarity of potassium cation in the solution. You can assume the volume of the solution doesn't change when the potassium sulfate is dissolved in it. Round your answer to 2 significant digits."</u></em>
Explanation:
Reaction :-
K2SO4 + Na2CrO4 ------> K2CrO4 + Na2SO4
Mass of K2SO4 = 0.0842 g, Molar mass of K2SO4 = 174.26 g/mol
Number of moles of K2SO4 = 0.0842 g / 174.26 g/mol = 0.000483 mol
Concentration of Na2CrO4 = 52.0 mM = 52.0 * 10^-3 M = 0.052 mol/L
Volume of Na2CrO4 solution = 50.0 ml = 50 L / 1000 = 0.05 L
Number of moles of Na2CrO4 = 0.05 L * 0.052 mol/L = 0.0026 mol
Since number of moles of K2SO4 is smaller than number of moles Na2CrO4, so 0.000483 mol of K2SO4 will react with 0.000483 mol of Na2CrO4 will produce 0.000483 mol of K2CrO4.
0.000483 mol of K2CrO4 will dissociate into 2* 0.000483 mol of K^+
Final concentration of potassium cation
= (2*0.000483 mol) / 0.05 L = 0.02 mol/L = 0.02 M