According to Newton's second law, the force applied to an object is equal to the product between the mass of the object and its acceleration:

where F is the magnitude of the force, m is the mass of the object and a its acceleration.
In this problem, the object is the insect, with mass

. The acceleration of the insect is

, therefore we can calculate the force exerted by the car on the insect:

How do we find the force exerted by the insect on the car?
According to Newton's third law (known as action-reaction law), when an object A exerts a force on an object B, object B also exerts a force equal and opposite on object A. Therefore, the force exerted by the insect on the car is equal to the force exerted by the car on the object, so it is 0.01 N.
Your eyes are the most delicate thing on your body. Little things can make you go blind
Answer:
28852 J
Explanation:
When a force applied in a body produces a displacement in it, the force realized a work. The force that moves Karen is contrary to her weight and must be equal to it.
The work (W) is:
W = F.d.cos(θ), where F is the force, d is the displacement, and θ is the angle.
Knowing that cos(26°) = 0.899, and F = m*g
W = 51.9*9.8*63.1*0.899
W = 28852 J
Density is a physical property derived from mass devided by volume (first part of the question)
m=v*p (p is rho)
m=9.5*60 =570 g
Density of water is 1g/cm^3 (centimeter cubed)