Answer: perpendicular to it oscillations.
Explanation: A transverse wave is a wave whose oscillations is perpendicular to the direction of the wave.
By perpendicular, we mean that the wave is oscillating on the vertical axis (y) of a Cartesian plane and the vibration is along the horizontal axis (x) of the plane.
Examples of transverse waves includes wave in a string, water wave and light.
Let us take a wave in a string for example, you tie one end of a string to a fixed point and the other end is free with you holding it.
If you move the rope vertically ( that's up and down) you will notice a kind of wave traveling away from you ( horizontally) to the fixed point.
Since the oscillations is perpendicular to the direction of wave, it is a transverse wave
Answer:
Below
Explanation:
You can use this equation to find the distance :
distance = velocity x time
distance = (26.7)(3.06)
= 81.702 m
Rounding to 3 sig figs
= 81.7 m
Hope this helps
Answer: 996m/s
Explanation:
Formula for calculating velocity of wave in a stretched string is
V = √T/M where;
V is the velocity of wave
T is tension
M is the mass per unit length of the wire(m/L)
Since the second wire is twice as far apart as the first, it will be L2 = 2L1
Let V1 and V2 be the speed of the shorter and longer wire respectively
V1 = √T/M1... 1
V2 = √T/M2... 2
Since V1 = 249m/s, M1 = m/L1 M2 = m/L2 = m/2L1
The equations will now become
249 = √T/(m/L1) ... 3
V2 = √T/(m/2L1)... 4
From 3,
249² = TL1/m...5
From 4,
V2²= 2TL1/m... 6
Dividing equation 5 by 6 we have;
249²/V2² = TL1/m×m/2TL1
{249/V2}² = 1/2
249/V2 = (1/2)²
249/V2 = 1/4
V2 = 249×4
V2 = 996m/s
Therefore the speed of the wave on the longer wire is 996m/s
Answer:
<h2>42.67N</h2>
Explanation:
Step one:
<u>Given </u>
mass m= 0.32kg
intital velocity, u= 14m/s
final velocity v= 22m/s
time= 0.06s
Step two:
<u>Required</u>
Force F
the expression for the force is
F=mΔv/t
F=0.32*(22-14)/0.06
F=(0.32*8)/0.06
F=2.56/0.06
F=42.67N
The average force exerted on the bat 42.67N