Answer:

Explanation:
The maximum velocity of an object moving in a curve beyond which it will slide off the curve is given by the relationship in equation (1);

where
is the coefficient of friction between the object and the surface of the curve, g is acceleration due to gravity and r is the radius of the curve.
Given;
v = 0.8m/s
g = 
r = ?

In order to solve for
, we can simply make it the subject of formula from equation (1) as follows;

since we were not given the value of r, we can just substitute other known values, then solve and leave the answer in terms of r.
Therefore;


Explanation:
Given that,
Initial speed of the car, u = 88 km/h = 24.44 m/s
Reaction time, t = 2 s
Distance covered during this time, 
(a) Acceleration, 
We need to find the stopping distance, v = 0. It can be calculated using the third equation of motion as :


s = 74.66 meters
s = 74.66 + 48.88 = 123.54 meters
(b) Acceleration, 


s = 37.33 meters
s = 37.33 + 48.88 = 86.21 meters
Hence, this is the required solution.
Answer: false
Explanation: the longer the period, the less thef= frequency
Answer:

Explanation:
As we know that initial speed of the fall of the stone is ZERO

also the acceleration due to gravity on Mars is g
so we have

now we have

now if the same is dropped for 4t seconds of time
then again we will use above equation


