Answer:
<h2>belajar jangan malas malas</h2>
You can detect salt in water without tasting by measuring the density of the water. Place a glass of spring water and a glass of the suspected salt water on a balance scale and the heavier one contains salt. Other ways to test for salt in water is to put a drop of water on the end of a nail and place in a gas flame. If the water contains salt, the flame will turn a yellow/orange color.
Answer:
Gaseous nitrogen has unique chemical and physical properties that make it suitable for use in food processing. Nitrogen is inert which means it will not react with prepared food materials, which can alter their aromas or flavors. Also, gaseous nitrogen will effectively displace oxygen minimizing oxidation and the growth of microorganisms that cause foods to lose their freshness and deteriorate faster.
Explanation:
Source: https://www.generon.com/using-nitrogen-gas-in-food-packaging/
Answer:
Theoretical yield = 2.5 g
Explanation:
Given data:
Mass of sodium = 79.7 g
Mass of water = 45.3 g
Theoretical yield of hydrogen gas = ?
Solution:
Chemical equation:
2Na + 2H₂O → 2NaOH + H₂
Number of moles of sodium:
Number of moles = mass/ molar mass
Number of moles = 79.7 g / 23 g/mol
Number of moles = 3.5 mol
Number of moles of water:
Number of moles = mass/ molar mass
Number of moles = 45.3 g / 18g/mol
Number of moles = 2.5 mol
Now we will compare the moles of hydrogen gas with water and sodium.
H₂O : H₂
2 : 1
2.5 : 1/2×2.5 =1.25 mol
Na : H₂
2 : 1
3.5 : 1/2×3.5 =1.75 mol
water will be limiting reactant.
Theoretical yield:
Mass = number of moles × molar mass
Mass = 1.25 mol × 2 g/mol
Mass = 2.5 g
Answer:
A
Explanation:
rest are nonmetals and they are not shiny