Answer/Explanation:
quantum of energy is important because the energy of a particle, and also how long it has had that energy, with infinite precision. Quantum, in physics, discrete natural unit, or packet, of energy, charge, angular momentum, or other physical property. the term also applicable to quanta of other forms of electromagnetic energy such as X - rays and gamma rays.
Answer:
A. Engineers come up with scientific questions when they are developing their design, and scientists do research to answer them.
The least reactive metal is lead, since it reacted with none of the salt solutions.
Answer:
The kinetic energy of the two stones is 320 J
Explanation:
Kinetic energy is the energy that a body possesses due to its movement. So it is the capacity or work that allows an object to go from being at rest, or still, to moving at a certain speed.
In other words, the kinetic energy of an object is that which is produced due to its motion and depends on its mass and velocity as follows:

where the kinetic energy Ec is measured in joules (J), the mass m is measured in kilograms (kg) and the velocity v in meters/second (m/s).
In this case you know that a 20 kg curling stone is sliding in a positive direction at 4 m/s. So:
Replacing you have:

Ec₁= 160 J
A second curling stone slides at the same speed but in the opposite direction. So:
Replacing you have:

Ec₂= 160 J
The kinetic energy of the two stones is calculated as:
Ec= Ec₁ + Ec₂
Ec= 160 J + 160 J
Ec= 320 J
<u><em>The kinetic energy of the two stones is 320 J</em></u>
Assuming the kind of vibration you are talking about is the kind where you stretch the rubber band between two points and then "twang" it, then the answer is fairly complex. What happens when you cause the vibrations to start is you make something called a "standing wave". In a standing wave, each particle in the rubber band has a certain amount of energy which causes it to move backwards and forwards, the particles with more energy have a larger "amplitude" (how much they move), and of course the particles with less energy have a smaller amplitude. Now a standing wave has two main components: The amplitude, and the frequency. The amplitude of the whole wave refers to the largest amplitude any particles has. The frequency refers to how often it takes for one of the particles to move between the two furthest away points it can be.
To compare rubber bands, you must remember to keep certain things constant. If you're looking at their vibrations, the amount of energy you use to "twang" the rubber band should be the same each time you twang it (which is the same as applying the same force each time you twang it).
A larger rubber band has more area over which to spread the energy, as well as it has more mass for the energy to move, so the vibrations will have smaller amplitudes, and smaller frequencies, overall vibrating less and with smaller vibrations.