Answer: 0.049 mol
Explanation:
1) Data:
n₁ = 0.250 mol
p₁ = 730 mmHg
p₂ = 1.15 atm
n₂ - n₁ = ?
2) Assumptions:
i) ideal gas equation: pV = nRT
ii) V and T constants.
3) Solution:
i) Since the temperature and the volume must be assumed constant, you can simplify the ideal gas equation into:
pV = nRT ⇒ p/n = RT/V ⇒ p/n = constant.
ii) Then p₁ / n₁ = p₂ / n₂
⇒ n₂ = p₂ n₁ / p₁
iii) n₂ = 1.15atm × 760 mmHg/atm × 0.250 mol / 730mmHg = 0.299 mol
iv) n₂ - n₁ = 0.299 mol - 0.250 mol = 0.049 mol
Answer:
In SI units 98.1 N, 16.24 N
English units 22.053861 lbf, 3.6509144 lbf
Explanation:
g = Acceleration due to gravity
m = Mass = 10 kg
Weight on Earth

Converting to lbf

On Moon

Converting to lbf

In SI units 98.1 N, 16.24 N
English units 22.053861 lbf, 3.6509144 lbf
The spiral structure of the milky way can be explained by long lived quasi-static density waves<em>, </em><em>according to the lin-shu hypothesis. </em>Curiously, the waves of higher density gas and stars (seen as spiral arms) appear to remain static as stars move around the galaxy. This explained by assuming that the gravitational disturbances cause by the 'clumping' material in the arms does not affect the gravitational field of the galaxy as whole and is therefore negligible.
source: Astrophysicist
Average Velocity= displacement/time Av=50/0.50 Av=100