1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nasty-shy [4]
3 years ago
14

If a rock is thrown upward on the planet Mars with a velocity of 10 m/s, its height in meters t seconds later is given by y= 10t

- 1.86t^2. (a) Find the average velocity over the given time intervals: (i) [1, 2] (ii) [1, 1.5] (iii) [1, 1.1] (iv) [1, 1.01] (v) [1, 1.001] (b) Estimate the instantaneous velocity when t = 1.
Physics
1 answer:
spin [16.1K]3 years ago
4 0

Answer:

a)

i) v = 4.42 m/s

ii) v = 5.36 m/s

iii) v = 6.1 m/s

iv) v = 6.26 m/s

v) v = 6.28 m/s

b) The instantaneous velocity at t = 1 is 6.28 m/s

Explanation:

a) The average velocity is the variation of the position over time. It is expressed as follows:

v = Δy/Δt

Where

v = average velocity

Δy = displacement = final position - initial position

Δt = variation of time = final time - initial time

i) Let´s find the position at both times and then apply the equation for the average velocity:

y(t) = 10 · t - 1.86 · t²

y(1 s) = 10 m/s · 1 s - 1.86 m/s² · (1 s)²

y = 8.14 m

y (2 s) = 10 m/s · 2 s - 1.86 m/s² · (2 s)²

y = 12.56 m

Then, the average velocity  will be:

v = final position - initial position / final time - initial time

v = 12.56 m - 8.14 m / 2 s - 1 s = 4.42 m/s

ii) We proceed in the same way as in i)

y(1.5 s) = 10 m/s · 1.5 s - 1.86 m/s² · (1.5 s)²

y = 10.82 m

v = 10.82 m - 8.14 m / 1.5 s - 1 s = 5.36 m/s

iii)

y(1.1 s) = 10 m/s · 1.1 s - 1.86 m/s² · (1.1 s)²

y = 8.75 m

v = 8.75 m - 8.14 m / 1.1 s - 1 s = 6.1 m/s

iv)

y(1.01 s) = 10 m/s · 1.01 s - 1.86 m/s² · (1.01 s)²

y = 8.20 m

v = 8.20 m - 8.14 m / 1.01 s - 1 s = 6 m/s ( 6.26 m/s without rounding the y-final value)

v)

y(1.001 s) = 10 m/s · 1.001 s - 1.86 m/s² · (1.001 s)²

y = 8.146

v = 8.146 m - 8.14 m  / 1.001 s - 1 s = 6 m/s  (6.28 m/s without rounding the value of y-final)

b) The instantaneous velocity is given by the derivative of the position function:

y = 10 · t - 1.86 · t²

dy/dt = 10 - 2 · 1.86 · t  = 10 - 3.72 · t

At t = 1

v = 10 m/s - 3.72 m/s² · 1 s = 6.28 m/s

You might be interested in
Coins were developed as a medium of exchange because other items like cows, grain, and land were more difficult to move from pla
miv72 [106K]
True, they used them because its easier to trade coins than products
7 0
3 years ago
Read 2 more answers
The velocity of sound on a particular day outside is 331 meters/second. What is the frequency of a tone if it has a wavelength o
N76 [4]

Frequency = (speed) / (wavelength)

Frequency = (331 m/s) / (0.6 m) = 551.7 Hz
3 0
3 years ago
A curved line going up indicates the object is
Vesna [10]

Explanation:

Both graphs show plotted points forming a curved line. Curved lines have changing slope; they may start with a very small slope and begin curving sharply (either upwards or downwards) towards a large slope. In either case, the curved line of changing slope is a sign of accelerated motion (i.e., changing velocity).

8 0
2 years ago
A sprinter accelerates from rest to 10.0 m/s in 1.28 s . Part A Part complete What is her acceleration in m/s2? a a = 7.81 m/s2
Mashutka [201]

Explanation:

It is given that,

Initial speed of sprinter, u = 0

Final speed of sprinter, v = 10 m/s

Time taken, t = 1.28 s

a. We need to find the acceleration of sprinter. It can be calculated using first equation of motion as :

a=\dfrac{v-u}{t}

a=\dfrac{10\ m/s}{1.28\ s}

a=7.81\ m/s^2

b. Final speed of the sprinter, v = 36 km/h

Time, t = 0.000355 h

Acceleration, a=\dfrac{36}{0.000355}

a=101408.45\ km/h^2

Hence, this is the required solution.

3 0
3 years ago
A laser beam with a frequency of 180 Hz forms an 8 m standing wave with 10 nodes.
DIA [1.3K]

Answer:33

Explanation:

F = frequency

N =  Node count

w = wave lenght

v = wave velocity

L = distance wave traveled

First find wave length of laser

w = (2/(N))*(L)

w = (2/(10))*(8)

w = 1.6

then using (w), find velocity

V =  (w)(F)

V = (1.6)*(108)

V = 288

Plug in V and the new frequency to solve for new node count

F = NV/2L

(600) = (N)*(288) / 2 * (8)

(N) = 33.33

there are 33 nodes

8 0
3 years ago
Other questions:
  • What brings greater concentration of dissolved nutrients to ocean surface
    6·2 answers
  • The Earth rotates on its axis every __________ and revolves around the Sun every __________.
    15·2 answers
  • What is the wavelength of an earthquake wave if it has a speed of 7 km/s and a frequency of 12 Hz?
    7·1 answer
  • A Ferris wheel car is moving in a circular path at a constant speed. Is the car accelerating?
    9·1 answer
  • Small, slowly moving spherical particles experience a drag force given by Stokes' law: Fd = 6πηrv where r is the radius of the p
    11·1 answer
  • A motorcycle traveling at 15 m/s accelerates at a constant rate of 4.0 m/s over a distance of 50 meters. What is the final veloc
    8·1 answer
  • When electromagnetic fields interact with charged particles
    5·1 answer
  • At 0°C, frozen water (ice) changes to liquid water. When an ice cube is placed on something that is warmer than it heat will mov
    12·1 answer
  • Describe how work done is related to a change in volume of a fluid. 100 points
    14·2 answers
  • Which is an SI base unit that makes up part of the unit of energy?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!