Answer:
Hey mate I shall not tell you the answer I shall explain it to you after this if still you can't understand then say
Explanation:
Derive v = u + at by Graphical Method. Consider the velocity – time graph of a body shown in the below Figure
Derive s = ut + (1/2) at2 by Graphical Method. Velocity so time graph to derive the equations of motion.
Derive v2 = u2 + 2as by Graphical Method. Velocity–Time graph to derive the equations of motion.
I hope you understand now
enjoy your day
#Captainpower :)❤❤
Answer:
12.17 m/s²
Explanation:
The formula of period of a simple pendulum is given as,
T = 2π√(L/g)........................ Equation 1
Where T = period of the simple pendulum, L = length of the simple pendulum, g = acceleration due to gravity of the planet. π = pie
making g the subject of the equation,
g = 4π²L/T²................... Equation 2
Given: T = 1.8 s, l = 1.00 m
Constant: π = 3.14
Substitute into equation 2
g = (4×3.14²×1)/1.8²
g = 12.17 m/s²
Hence the acceleration due to gravity of the planet = 12.17 m/s²
Answer:
1275J
Explanation:
Given parameters:
Force on box = 85N
Distance moved = 15m
Unknown:
Work done = ?
Solution:
Work done is the amount of force applied on a body to move it through a specific distance.
Work done = Force x distance
Now insert the parameters and solve;
Work done = 85 x 15 = 1275J