Isn't velocity Distance over time? if the degree isn't adding resistance it should be 4000 ÷ 20 which gives you 200mps ("per second") which is the velocity without resistance.
Answer:
B) 2I
Explanation:
The equation that relates voltage, current and resistance is V=RI.
The equation for the resistance of a material in terms of its resistivity, length and cross-sectional area is 
In this case, the length is divided by 2 while keeping its resistivity (since it's the same material) and area, which means the resistance gets divided by 2. Then, looking at the equation I=V/R and keeping V constant, one deduces that since the resistance now is half than before then current now must be twice as before.
This is all intuitive in fact, cuting a homogeneous resistor in half and leaving the rest of the variables constant makes twice as easy for the electrons to cross the conductor, thus twice the current (one has to know that all the variables involved behave linearly, as the equations show).
Answer:
Explanation:
Total distance covered = 25 + 15 = 40 m
Total time = 15 + 8 = 23 s
Average speed = total distance covered / total time
= 40 / 23
= 1.74 m / s
Total displacement = 25 - 15 = 10 m
Total time = 15 + 8 = 23 s
Average velocity = total displacement / total time
= 10 / 23
= .434 m / s to the right .
Answer:
799.54 ft
Explanation:
Linear thermal expansion is:
ΔL = α L₀ ΔT
where ΔL is the change in length,
α is the linear thermal expansion coefficient,
L₀ is the original length,
and ΔT is the change in temperature.
Given:
α = 1.2×10⁻⁵ / °C
L₀ = 800 ft
ΔT = -17°C − 31°C = -48°C
Find: ΔL
ΔL = (1.2×10⁻⁵ / °C) (800 ft) (-48°C)
ΔL = -0.4608
Rounded to two significant figures, the change in length is -0.46 ft.
Therefore, the final length is approximately 800 ft − 0.46 ft = 799.54 ft.
Using the formula:
a = (Vf - Vi) / t
Our initial velocity is 0 m/s, and our final velocity is 8.15 m/s, with a time period of 5 seconds:
a = (8.15 - 0.0) / 5
a = 1.63 m/s^2
If you know the acceleration due to gravity on the Moon, you can confirm this answer. The recorded gravitational acceleration on the Moon is 1.62 m/s^2.