Answer:
a) t=24s
b) number of oscillations= 11
Explanation:
In case of a damped simple harmonic oscillator the equation of motion is
m(d²x/dt²)+b(dx/dt)+kx=0
Therefore on solving the above differential equation we get,
x(t)=A₀
where A(t)=A₀
A₀ is the amplitude at t=0 and
is the angular frequency of damped SHM, which is given by,
Now coming to the problem,
Given: m=1.2 kg
k=9.8 N/m
b=210 g/s= 0.21 kg/s
A₀=13 cm
a) A(t)=A₀/8
⇒A₀ =A₀/8
⇒
applying logarithm on both sides
⇒
⇒
substituting the values
b)
, where is time period of damped SHM
⇒
let be number of oscillations made
then,
⇒
Answer:0.1759 v
Explanation:
Intensity of wave at receiver end is
I=
I=
I=
Amplitude of electric field at receiver end
Amplitude of induced emf
=
=
=
Answer:
The value is
Explanation:
From the question we are told that
The wavelength is
The velocity is
The mass of electron is
Generally the energy of the incident light is mathematically represented as
Here c is the speed of light with value
h is the Planck constant with value
So
=>
Generally the kinetic energy is mathematically represented as
=>
=>
Generally the ionization energy is mathematically represented as
=>
Answer:
1. The length is 8.35m
2. The period on the moon is 14.05 secs
Explanation:
1. Data obtained from the question. This includes the following:
Period (T) = 5.8 secs
Acceleration due to gravity (g) = 9.8 m/s2
Length (L) =...?
The length can be obtained by using the formula given below:
T = 2π√(L/g)
5.8 = 2π√(L/9.8)
Take the square of both side
(5.8)^2 = 4π^2 x L/ 9.8
Cross multiply
4π^2 x L = (5.8)^2 x 9.8
Divide both side by 4π^2
L = (5.8)^2 x 9.8 / 4π^2
L= 8.35 m
2. Data obtained from the question. This includes the following:
Acceleration due to gravity (g) = 1.67 m/s2
Length (L) = 8.35m (the length remains the same)
Period (T) =?
The period can be obtained as follow:
T = 2π√(L/g)
T = 2π√(8.35/1.67)
T = 14.05 secs
Therefore, the period on the moon is 14.05 secs