Answer:
A = 2 cm
, λ = 8 cm
Explanation:
The amplitude of a wave is the maximum height it has, in this case the height is measured by the vertical ruler,
We are told the balance point is in the reading of 5 cm, that the maximum reading is 3 cm and the Minimum reading is 7 cm. Therefore, the distance from the ends of the ridge to the point of equilibrium is
d = 7-5 = 2 cm
d = 5-3 = 2 cm
A = 2 cm
The wavelength is the minimum horizontal distance for which the wave is repeated, that is measured by the horizontal ruler.
The initial reading for 4 cm and the final reading for 8 cm, this distance corresponds to a crest of the wave, the complete wave is formed by two crests whereby the wavelength is twice this value
Δx = 8-4 = 4 cm
λ = 2 Δx
λ = 8 cm
Answer and Explanation:
Data provided in the question
Carbon mass = m
Initial speed = v_i
Coefficient = μk
Based on the above information, the expressions are as follows
a. By using the energy considerations the expression for the carton moving distance is
As we know that
where,
b. The initial speed of the carton if the factor of 3 risen, so the expression is
Answer: 4.9 x 10^6 joules
Explanation:
Given that:
mass of boulder (m) = 2,500 kg
Height of ledge above canyon floor (h) = 200 m
Gravita-tional potential energy of the boulder (GPE) = ?
Since potential energy is the energy possessed by a body at rest, and it depends on the mass of the object (m), gravitational acceleration (g), and height (h).
GPE = mgh
GPE = 2500kg x 9.8m/s2 x 200m
GPE = 4900000J
Place result in standard form
GPE = 4.9 x 10^6J
Thus, the gravita-tional potential energy of the boulder-Earth system relative to the canyon floor is 4.9 x 10^6 joules
Answer:
I just noticd i dont speak this launguage
Explanation: