Answer:
In an elastic collision:
- There is no external net force acting. Thus, Momentum before and after collision is equal. Momentum remains conserved.
- Total energy always remains conserved as energy cannot be created nor destroyed. It can change from one form to another.
- There is no lost due to friction in elastic collision. So the kinetic energy is also conserved.
- Velocities may change after collision. If the masses are equal, the velocities interchange.
When one object is stationary:
Final velocity of object 1:
v₁ = (m₁ - m₂)u₁/(m₁ +m₂)
Final velocity of object 2:
v₂ = (2 m₁ u₁)/(m₁+m₂) =
- Objects do not stick together in elastic collision. They stick together in inelastic collision.
- One object may be stationary before the elastic collision.
Thus, conditions for an elastic collision:
- Energy is conserved.
- Velocities may change.
- Momentum is conserved.
- Kinetic energy is conserved.
- One object may be stationary before the elastic collision.
(aq)
This means it’s aqueous (dissolved in water)
Answer:
a

b
Explanation:
From the question we are told that
The radius of the flywheel is 
The mass of the flywheel is 
The rotational speed of the flywheel is 
The power supplied by the motor is 
Generally the moment of inertia of the flywheel is mathematically represented as

substituting values


The kinetic energy that is been stored is

substituting values

Generally power is mathematically represented as

=> 
substituting the value

C
one hydrogen ion reattaches to a hydroxide ion to form a water molecule, another water molecule dissociates to replace the hydrogen ion and the hydroxide ion in solution.
Answer:
Explanation:
vi = 200/5 = 40 m/s
a = (vf - vi)/t = (60 - 40)/20 = 1 m/s²
F = ma = 2000(1) = 2000 N