Answer:
Explanation:
Given
Diameter of Pulley=10.4 cm
mass of Pulley(m)=2.3 kg
mass of book
height(h)=1 m
time taken=0.64 s


![a=4.88 m/s^2and [tex]a=\alpha r](https://tex.z-dn.net/?f=a%3D4.88%20m%2Fs%5E2%3C%2Fp%3E%3Cp%3Eand%20%5Btex%5Da%3D%5Calpha%20r)
where
is angular acceleration of pulley


And Tension in Rope


T=8.364 N
and Tension will provide Torque




Thus mass is uniformly distributed or some more towards periphery of Pulley
Answer:
33,458.71 turns
Explanation:
Given: L = 37 cm = 0.37 m, B= 0.50 T, I = 4.4 A, n= number of turn per meter
μ₀ = Permeability of free space = 4 π × 10 ⁻⁷
Solution:
We have B = μ₀ × n × I
⇒ n = B/ (μ₀ × I)
n = 0.50 T / ( 4 π × 10 ⁻⁷ × 4.4 A)
n = 90,428.94 turn/m
No. of turn through 0.37 m long solenoid = 90,428.94 turn/m × 0.37
= 33,458.71 turns
Answer:
(a) Wavelength is 0.436 m
(b) Length is 0.872 m
(c) 11.518 m/s
Solution:
As per the question:
The eqn of the displacement is given by:
(1)
n = 4
Now,
We know the standard eqn is given by:
(2)
Now, on comparing eqn (1) and (2):
A = 1.22 cm
K = 

where
A = Amplitude
K = Propagation constant
= angular velocity
Now, to calculate the string's wavelength,
(a) 
where
K = propagation vector


(b) The length of the string is given by:


(c) Now, we first find the frequency of the wave:



Now,
Speed of the wave is given by:


Answer:
There is no change, unless your mass is somehow at the quantum level, at which the concept of half-life breaks down.
Half life is a property of the specific radioactive isotope...NOT of the initial sample's mass.
In a moving car the outside looks to be moving. however if viewed from the outside, the car appears to be moving. so motion is relative to the person observing.