Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together that these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at one of the foci of that ellipse.
Elements with atomic numbers from 58 through 71 are part of the
<span>
lanthanide</span> series <span />
Answer:
B.The linear velocity of the gears is the same. The linear velocity is 432π centimeters per minute.
Explanation:
As we know that the small gear completes 24 revolutions in 20 seconds
so the angular speed of the smaller gear is given as


Now we know that the tangential speed of the chain is given as

so we have



Since both gears are connected by same chain so both have same linear speed and hence correct answer will be
B.The linear velocity of the gears is the same. The linear velocity is 432π centimeters per minute.
Answer:
transmit energy
Explanation:
hope this helps u stay safe
Compute first for the vertical motion, the formula is:
y = gt²/2
0.810 m = (9.81 m/s²)(t)²/2
t = 0.4064 s
whereas the horizontal motion is computed by:
x = (vx)t
4.65 m = (vx)(0.4064 s)
4.65 m/ 0.4064s = (vx)
(vx) = 11.44 m / s
So look for the final vertical speed.
(vy) = gt
(vy) = (9.81 m/s²)(0.4064 s)
(vy) = 3.99 m/s
speed with which it hit the ground:
v = sqrt[(vx)² + (vy)²]
v = sqrt[(11.44 m/s)² + (3.99 m/s)²]
v = 12.12 m / s