Answer:
Explanation:
The car is rolling without slipping so Vcm= R×ω = 0.325×49 = 16
Answer:
a) 0.036 J b) 0.036J c) 0.036 d) 1.9m/s e) 0.18 m
Explanation:
Mass of the dart = 0.02kg, the spring was compressed to 6cm
Work needed to compress the spring = 1/2*k*x ^2 where k is the force constant of the spring in N/m, x is the distance it was compressed in m
Work needed to compress the spring = 0.5 * 20* 0.06^2 since 6cm = 6 / 100 = 0.06 m
Work needed to compress the spring = 0.036J
b) the total energy stored in the spring = the work done to compress the spring = 0.036J
c) kinetic energy of the dart as it leaves the the spring = elastic potential energy stored in the spring = the work done in compressing the = 0.036J using the law of conservation of energy; energy is neither created nor destroyed but transformed from one form to another.
d) 1/2mv^2 = 0.036
mv^2 = 0.036*2
v^2 = 0.036*2 / 0.02 = 3.6
v = √3.6 = 1.897 approx 1.9m/s
e) kinetic energy of the dart = work done against gravity to get the body to height h
Work done against gravity = potential energy conserved at height = -mgh g is negative because the motion is upward while gravity acts downward
0.036 = 0.02 * 9.81 * h
0.036 / ( 0.02*9.81) = h
h = 0.18 m
Answer:
A = 4.49
α = 57.72°
Explanation:
Knowing the magnitude of x & y of a vector we can determine the total magnitude of a vector.

The angle tangent can be used to determine the angle.

Answer:
v = 666.667 m/s
Explanation:
<u>Given</u>: length L = 25 cm = 0.25 m, B = 600 G = 0.06 T ( 1G = 0.0001 T)
emf= 10 V
Solution:
emf = vBL
v= emf / BL
v = 10 V / (0.06 T× 0.25 m)
v = 666.667 m/s
Answer:
t = 1.48 s
Explanation:
As we know that length of the Boeing plane is

width of the intersection is given as

now we know that deceleration of the plane is given as

Also the final speed of the plane while it clears the intersection is given as

now we have


also we know that


now we have

by solving above equation we have
