Answer:
Probably D (extensive DNA damage in the eggs...), maybe E (all of the above)
Explanation:
I'm looking for the answer myself becasue I'm not sure, but I'd probably go with D.
Hey there!
Ninety nine percent of the atmosphere is composed of oxygen and nitrogen! The atmosphere is composed of 78% nitrogen and 21% oxygen!
Hope it helps :D
Answer:
A mixture whose components are soluble in each other. ... a solution that has water as its solvent; most have an ionic substance as the solute, may contain a liquid ... The suspensions of particles larger than individual ions or molecules, but the ... This effect is used to determine whether a mixture is a true solution or a colloid.
process of solute particles being surrounded by water molecules arranged in a ... solution. homogeneous mixture consisting of a solute dissolved into a solvent. ... apart from the crystal, the individual ions are then surrounded by solvent particles in a ... are intermediate in size between those of a solution and a suspension.
A suspension is a heterogeneous mixture in which some of the particles ... The particles in a suspension are far larger than those of a solution, so gravity is … ... Particle size: 0.01-1nm; atoms, ions or molecules, Particle size: ... solutions because the individual dispersed particles of a colloid cannot be seen.
Explanation:
Answer: Most of the stars in the universe are main sequence stars — those converting hydrogen into helium via nuclear fusion. A main sequence star may have a mass between a third to eight times that of the sun and eventually burn through the hydrogen in its core. Over its life, the outward pressure of fusion has balanced against the inward pressure of gravity. Once the fusion stops, gravity takes the lead and compresses the star smaller and tighter.
Temperatures increase with the contraction, eventually reaching levels where helium is able to fuse into carbon. Depending on the mass of the star, the helium burning might be gradual or might begin with an explosive flash.
Answer:
0.02405 g/L is the solubility of argon in water at 25 °C.
Explanation:
Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the liquid.
To calculate the molar solubility, we use the equation given by Henry's law, which is:

where,
= Henry's constant = 
= partial pressure of carbonated drink = 0.51atm
Putting values in above equation, we get:

Molar mass of argon = 39.95 g/mol
Solubility of the argon gas :

0.02405 g/L is the solubility of argon in water at 25 °C.