Answer:
Pascal's law (also Pascal's principle[1][2][3] or the principle of transmission of fluid-pressure) is a principle in fluid mechanics given by Blaise Pascal that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.[4] The law was established by French mathematician Blaise Pascal in 1653 and published in 1663.[5][6]
Answer:
When the volume increases or when the temperature decreases
Explanation:
The ideal gas equation states that:

where
p is the gas pressure
V is the volume
n is the number of moles of gas
R is the gas constant
T is the gas temperature
Assuming that we have a fixed amount of gas, so n is constant, we can rewrite the equation as

which means the following:
- Pressure is inversely proportional to the volume: this means that the pressure decreases when the volume increases
- Pressure is directly proportional to the temperature: this means that the pressure decreases when the temperature decreases
Evaporation (or another word to use is water vapor.)
When Janet leaves the platform, she's moving horizontally at 1.92 m/s. We assume that there's no air resistance, and gravity has no effect on horizontal motion. There's no horizontal force acting on Janet to make her move horizontally any faster or slower than 1.92 m/s.
She's in the air for 1.1 second before she hits the water.
Moving horizontally at 1.92 m/s for 1.1 second, she sails out away from the platform
(1.92 m/s) x (1.1 sec) = <em>2.112 meters</em>
Answer:
They can be seen from a distance of 4.372 kilometers.
Explanation:
Using the Reyligh creterion for diffraction through a circular aperture we have
where symbol's have their usual meaning
thus applying values we get

