Answer:
1.d
2.d
3.c
4.c
Okay, d & d, c & c. Iknow what you're thinking, I guessed. Nope! I just took a good look and chosed what I thought was the best answer
Explanation:
Have a great day! Byeeee
Answer:
d = 10.2 m
Explanation:
When the car travels up the inclined plane, its kinetic energy will be used to do the work in climbing up. So according to the law of conservation of energy, we can write that:

where,
m = mass of car
v = speed of car at the start of plane = (36 km/h)(1000 m/1 km)(1 h/3600 s)
v = 10 m/s
F = force on the car in direction of inclination = W Sin θ
W = weight of car = mg
θ = Angle of inclinition = 30°
d = distance covered up the ramp = ?
Therefore,

<u>d = 10.2 m</u>
1. Tangential velocity:
<em>e) the instantaneous velocity of a body moving in a circular path.</em>
2. Parabolic pathway
<em>c. a curved path followed by projectiles</em>
3. Projectile
<em>d) an object projected through space, traveling in two dimensions, that accelerates vertically due to gravity.</em>
4. Centripetal acceleration
<em>a) acceleration towards the center caused by the centripetal force</em>
5. Centripetal force
<em>b) a force which keeps a body moving with a uniform speed along a circular path and is directed along the radius towards the center</em>
Answer:

Explanation:
We need to apply conservation of momentum and energy to solve this problem.
<u>Conservation of momentum</u>

(1)
- m(c) is the mass of stick clay
- m(w) is the mass of the wooden block
- v(ic) is the initial velocity of clay
- V is the final velocity of the system clay plus wood.
<u>Conservation of total energy</u>
The change in kinetic energy is equal to the change in internal energy, in our case it would be the energy loss due to the friction force. Let's recall the definition of work, it is the dot product between force and displacement, Therefore:



We can find V from this equation:

Now, let's put V into the equation (1) and find v(ic)

I hope it helps you!
<u />
Melting freezing and boiling are molecular changes