Cl2(g) -------> Cl-(aq) + ClO-(aq)
2e- + Cl2(g) -------> 2Cl-(aq) [reduction]
4OH-(aq) + Cl2(g) -----------> 2ClO-(aq) + 2H2O(l) + 2e- [oxidation]
______________________________________...
2OH-(aq) + Cl2(g) --------> Cl-(aq) + ClO-(aq) + H2O(l)
MgCl2 because it is the only option in which a metal appears with a nonmetal. In this case, the metal transfers electrons to the nonmental because the metal has a lower ionization energy.
Answer:
option A = C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
Explanation:
Law of conservation of mass:
This law stated that mass can not be created or destroyed in chemical reaction. It just changed from one to another form.
For example:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
28 g + 96 g = 88 g + 36 g
124 g = 124 g
This reaction correctly hold the law of conservation of mass.
Other options:
C + 4H₂ → CH₄
12 g + 8g = 16 g
20 g = 16 g
This reaction do not hold the law of conservation of mass.
3H₂O → 3H₂ + 3O₂
54 g = 6 g + 96 g
54 g = 102 g
This reaction do not hold the law of conservation of mass.
2Na + Cl → NaCl
46 g + 35.5 g = 58.5 g
81.5 g = 58.5 g
This reaction do not hold the law of conservation of mass.
B because those are the elements
Answer:
364 K or 91°C
Explanation:
Applying,
V₁/T₁ = V₂/T₂................ Equation 1
Where V₁ = Initial Volume, V₂ = Final volume, T₁ = initial Temperature, T₂ = final Temperature.
make T₂ the subject of the equation,
T₂ = V₂T₁/V₁................. Equation 2
From the question,
Given: V₁ = 375 mL, V₂ = 500 mL, T₁ = 0.0°C = (273+0) K = 273 K
Substitute these values into equation 2
T₂ = (500×273)/375
T₂ = 364 K
T₂ = (364-273) °C = 91 °C