1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksian1 [2.3K]
3 years ago
8

Calculate the moment of inertia for each scenario: (a) An 80.0 kg skater is approximated as a cylinder with a 0.140 m radius. (b

) The skater extends both her arms, each of which is approximated as a 4.00 kg rod with length 0.850 m rotated about its end. (c) Calculate the angular velocity of the skater during scenario (b) if her angular velocity during scenario (a) is 6.75 rad/s.
Physics
1 answer:
Zina [86]3 years ago
4 0

Answer:

a) the moment of inertia is 0.784 Kg*m²

b) the moment of inertia is with arms extended is 1.187 Kg*m²

c) the angular velocity in scenario (b) is 4.45 rad/s

Explanation:

The moment of inertia is calculated as

I = ∫ r² dm

since

I = Ix + Iy

and since the cylinder rotates around the y-axis then Iy=0 and

I = Ix = ∫ x² dm

if we assume the cylinder has constant density then

m = ρ * V = ρ * π R²*L = ρ * π x²*L

therefore

dm = 2ρπL* x dx

and

I = ∫ x² dm = ∫ x² 2ρπL* x dx = 2ρπL∫ x³ dx = 2ρπL (R⁴/4 - 0⁴/4) = ρπL R⁴ /2 =  mR² /2

therefore

I skater = mR² /2 = 80 Kg * (0.140m)²/2 = 0.784 Kg*m²

b) since the arms can be seen as a thin rod

m = ρ * V = ρ * π R²*L = ρ * π R²*x

dm =ρ * π R² dx

I1 = ∫ x² dm = ∫ x² * ρ * π R² dx = ρ * π R²*∫ x² dx = ρ * π R²* ((L/2)³/3 - (-L/2)³/3)

= ρ * π R²*2*L³/24 = mL²/12

therefore

I skater 2 = I1 + I skater =  mL²/12 + mR² /2= 8 Kg* (0.85m)²/12 +(80-8) Kg * (0.140m)²/2 = 1.187 Kg*m²

c)  from angular momentum conservation

I s2 * ω s2 = I s1 * ω s1

thus

ω s2 = (I s1 / I s2 )* ω s1 /= (0.784 Kg*m²/1.187 Kg*m²) * 6.75 rad/s = 4.45 rad/s

You might be interested in
What does the addition of two vectors give u
sweet-ann [11.9K]
Addition of 2vector gives you 1large vector quantity
3 0
3 years ago
Read 2 more answers
Ccording to coulomb's law, which pair of charged particles has the lowest potential energy? according to coulomb's law, which pa
Sladkaya [172]

Coulombs law says that the force between any two charges depends on the amount of charges and distance between them. This force is directly proportional to the magnitude of the two charges and inversely proportional to the distance between them.

F=k\frac{|q_1| |q_2|}{r^2}

where q_1\hspace{1mm}and\hspace{1mm}q_2 are charges, r is the distance between them and k is the coulomb constant.

case 1:

q_1=-e\\ q_2=+3e\\ r=100pm\\ \Rightarrow F=k\frac{|-e||3e|}{(100pm)^2}=3ke^2\times10^8

case 2

q_1=-e\\ q_2=+2e\\ r=100pm\\ \Rightarrow F=k\frac{|-e||2e|}{(100pm)^2}=2ke^2\times10^8

case 3:

q_1=-e\\ q_2=+e\\ r=100pm\\ \Rightarrow F=k\frac{|-e||e|}{(200pm)^2}=0.25ke^2\times10^8

Comparing the 3 cases:

The maximum potential force according to coulombs law is between -1 charge and +3 charge separated by a distance of 100 pm.

3 0
3 years ago
Read 2 more answers
•Would a moving fan have energy? Why or why not.
Pepsi [2]
Moving fan has rotational kinetic energy
Non moving fan has no energy since it is in rest
7 0
4 years ago
If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the in
wel

The question is incomplete! The complete question along with answer and explanation is provided below.

Question:

A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters.

What is the change in the potential energy (in Joules) of the mass as it goes up the incline?  

If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the incline, how much work is done by that force?

Given Information:  

Mass = m = 0.5 kg

Horizontal distance = d = 40 cm = 0.4 m

Vertical distance = h = 7 cm = 0.07 m

Normal force = Fn = 1 N

Required Information:  

Potential energy = PE = ?

Work done = W = ?

Answer:

Potential energy = 0.343 Joules

Work done = 0.39 N.m

Explanation:

The potential energy is given by

PE = mgh

where m is the mass of the object, h is the vertical distance and g is the gravitational acceleration.

PE = 0.5*9.8*0.07

PE = 0.343 Joules

As you can see in the attached image

sinθ = opposite/hypotenuse

sinθ = 0.07/0.4

θ = sin⁻¹(0.07/0.4)

θ = 10.078°

The horizontal component of the normal force is given by

Fx = Fncos(θ)

Fx = 1*cos(10.078)

Fx = 0.984 N

Work done is given by

W = Fxd

where d is the horizontal distance

W = 0.984*0.4

W = 0.39 N.m

3 0
3 years ago
Why does the number of dwarf planets recognized by astronomers in the solar system sometimes increase?
gregori [183]
Because sometimes it happens that they discover a dwarf planet
that nobody ever knew about before.  When that happens, they
ADD the new one to the list of known dwarf planets, and then the
total number of dwarf planets on the list increases by 1 .
4 0
3 years ago
Other questions:
  • What can happen if a body moves through speed of light
    14·2 answers
  • A motorcycle cover a distance of 1.8 km in 5 minute. calculate its average velocity?​
    15·2 answers
  • What is the SI unit for intensity?
    8·1 answer
  • At 8:00 am, the temperature in the earth science room was measured to be 62 degrees Fahrenheit. By 12:00 pm, the temperature had
    7·1 answer
  • Please help. ill make you BRAINLIEST
    9·1 answer
  • A ball of mass is released from rest at a height of 30 how fast is it going when it hits the ground
    10·1 answer
  • A proton starts from rest near the surface of a sheet of charge. It experiences a force of 14.0 microNewtons towards the sheet.
    8·1 answer
  • You kick a soccer ball with a speed of 18 m/s at an angle of 43. How long does it take the the ball to reach the top of its traj
    5·1 answer
  • The net force of two forces F1 and F2 acting in the same direction is 85N.And if is 15N when they are exerted in opposite direct
    12·2 answers
  • A crowbar 27 in. long is pivoted 8 in. from the end. What force must be applied at the long end in order to lift a 600 lb object
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!