Answer with Explanation:
We are given that
Area of loop=

Resistance, R=
B=
We know that magnetic flux

Emf ,
Current, 
Current, 
Substitute t=0 s
Then, I=
=1.6 A
Substitute t=1 s
Then, I=
=0
Substitute
t=2 s
Current, I=
=1.6 A
Answer:
t = 4.08 s
R = 40.8 m
Explanation:
The question is asking us to solve for the time of flight and the range of the rock.
Let's start by finding the total time it takes for the rock to land on the ground. We can use this constant acceleration kinematic equation to solve for the displacement in the y-direction:
We have these known variables:
- (v_0)_y = 0 m/s
- a_y = -9.8 m/s²
- Δx_y = -20 m
And we are trying to solve for t (time). Therefore, we can plug these values into the equation and solve for t.
- -20 = 0t + 1/2(-9.8)t²
- -20 = 1/2(-9.8)t²
- -20 = -4.9t²
- t = 4.08 sec
The time it takes for the rock to reach the ground is 4.08 seconds.
Now we can use this time in order to solve for the displacement in the x-direction. We will be using the same equation, but this time it will be in terms of the x-direction.
List out known variables:
- v_0 = 10 m/s
- t = 4.08 s
- a_x = 0 m/s
We are trying to solve for:
By using the same equation, we can plug these known values into it and solve for Δx.
- Δx = 10 * 4.08 + 1/2(0)(4.08)²
- Δx = 10 * 4.08
- Δx = 40.8 m
The rock lands 40.8 m from the base of the cliff.
Disease
Lack of natural reourses
war
asteroid
Polution.
Answer:
Yes
Explanation:
If lamp A burnt out there would still be a wire above it that connects lamp B and C to the power source
Answer:

Given:
Initial velocity (u) = 30 m/s
Final speed (v) = 0 m/s
Acceleration (a) = - 1.5 m/,s²
To Find:
Time in which train will come to rest (t).
Explanation:

So,
Time in which train will come to rest = 20 seconds