Answer:
(a) 1.21 m/s
(b) 2303.33 J, 152.27 J
Explanation:
m1 = 95 kg, u1 = - 3.750 m/s, m2 = 113 kg, u2 = 5.38 m/s
(a) Let their velocity after striking is v.
By use of conservation of momentum
Momentum before collision = momentum after collision
m1 x u1 + m2 x u2 = (m1 + m2) x v
- 95 x 3.75 + 113 x 5.38 = (95 + 113) x v
v = ( - 356.25 + 607.94) / 208 = 1.21 m /s
(b) Kinetic energy before collision = 1/2 m1 x u1^2 + 1/2 m2 x u2^2
= 0.5 ( 95 x 3.750 x 3.750 + 113 x 5.38 x 5.38)
= 0.5 (1335.94 + 3270.7) = 2303.33 J
Kinetic energy after collision = 1/2 (m1 + m2) v^2
= 0.5 (95 + 113) x 1.21 x 1.21 = 152.27 J
Sound source is at rest, you are moving with velocity v, f = frequency, c = speed of sound:
f = f0(1 + v/c)
115 = 100(1 + v/343)
115 = 100 + 100v/343
15 = 100v/343
v = 15*343/100
<span>
v = 51,45 m/s </span>
Answer: 
Explanation:
If we make an analysis of the net force
of the rock that was thrown upwards, we will have the following:
(1)
Where:
is the force with which the rock was thrown
is the weight of the rock
Being the weight the relation between the mass
of the rock and the acceleration due gravity
:
(2)
(3)
Substituting (3) in (1):
(4)
(5) This is the net Force on the rock
On the other hand, we know this force is equal to the multiplication of the mass with the acceleration, according to Newton's 2nd Law:
(6)
Finding the acceleration
:
(7)
(8)
Finally:
Answer:
The magnitude of the force that each wire exerts on the other will increase by a factor of two.
Explanation:
force on parallel current carrying wire, F = BILsinθ
where;
B is the strength of the magnetic field
L is the length of the wire
I is the magnitude of current on the wire
θ is the angle of inclination of the wire
Assuming B, L and θ is constant, then F ∝ I
F = kI

When the amount of current is doubled in one of the wires, lets say the second wire;

Also, if will double the amount of current on the first wire, then
F₁ = 2F₂
Therefore, the magnitude of the force that each wire exerts on the other will increase by a factor of two.
Explanation:
(a)
The photoelectric effect is the phenomenon in which the light of the particular frequency incidents on the material. Then the emission of the electrons from the surface of the material occurs.
This phenomenon could not be explained by Newtonian physics.
In Newtonian physics, the energy is not discrete. In quantum mechanics, the energy is discrete. This is the main why the photoelectric effect could not be explained by Newtonian physics.
(b)
Light consists of photons. The photon is a packet of energy. It is also called quanta. The energies of the photons are quantized.
When a photon strikes on the surface of metal then the energy of photon is absorbed by an electron in the metal so that it may eject from the surface. This phenomenon is called the photoelectric effect.
(c)
In quantum mechanics, wave-particle duality concept is used to explain the wave-particle nature of the light. Light behaves as particle as well as wave. It shows both nature. The photoelectric phenomenon shows the particle nature of the light. It acts as a particle when it hits the surface of the metal.
In line spectra, the electron is excited to an energy level. In this case energy is transferred from photon to electron. There is a collision between photon and electron. The change in momentum will occur. It shows the particle nature of the light.