Answer:
C
Explanation:
I COULD be wrong, i'm not sure but im confident its c
Answer:
778.4°C
Explanation:
I = 700
R = 6x10⁻⁴
we first calculate the rate of heat that is being transferred by the current
q = I²R
q = 700²(6x10⁻⁴)
= 490000x0.0006
= 294 W/M
we calculate the surface temperature
Ts = T∞ + 
Ts = 


The surface temperature is therefore 778.4°C if the cable is bare
Answer:
True
Explanation:
For point in xz plane the stress tensor is given by![\left[\begin{array}{ccc}Dx_{} &txz\\tzx&Dz\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7DDx_%7B%7D%20%26txz%5C%5Ctzx%26Dz%5C%5C%5Cend%7Barray%7D%5Cright%5D)
where Dx is the direct stress along x ; Dz is direct stress along z ; tzx and txz are the shear stress components
We know that the stress tensor matrix is symmetrical which means that tzx = txz ( obtained by moment equlibrium )
thus we require only 1 independent component of shear stress to define the whole stress tensor at a point in 2D plane
Answer:
Time taken = 136.32 minutes
Explanation:
The solution and complete explanation for the above question and mentioned conditions is given below in the attached document.i hope my explanation will help you in understanding this particular question.
A 260 ft (79.25m) length of size 4 AWG uncoated copper wire operating at a temperature of 75°c has a resistance of 0.0792 ohm.
Explanation:
From the given data the area of size 4 AWG of the code is 21.2 mm², then K is the Resistivity of the material at 75°c is taken as ( 0.0214 ohm mm²/m ).
To find the resistance of 260 ft (79.25 m) of size 4 AWG,
R= K * L/ A
K = 0.0214 ohm mm²/m
L = 79.25 m
A = 21.2 mm²
R = 0.0214 * 
= 0.0214 * 3.738
= 0.0792 ohm.
Thus the resistance of uncoated copper wire is 0.0792 ohm