Answer:
Technician A only
Explanation:
The application of the breaks by stepping on the break pedal moves the pedal pushrod and plunger forward within the diaphragm plate, bringing about the contact between the vacuum port seal and the vacuum valve that closes the vacuum port and the passage that connects the left and right chambers such that the pressure in one chamber and te vacuum in the other chamber are held steady.
Answer:

Explanation:
Using the expression shown below as:

Where,
is the number of vacancies
N is the number of defective sites
k is Boltzmann's constant = 
is the activation energy
T is the temperature
Given that:

N = 10 moles
1 mole = 
So,
N = 
Temperature = 425°C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (425 + 273.15) K = 698.15 K
T = 698.15 K
Applying the values as:

![ln[\frac {2.3}{6.023}\times 10^{-11}]=-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}](https://tex.z-dn.net/?f=ln%5B%5Cfrac%20%7B2.3%7D%7B6.023%7D%5Ctimes%2010%5E%7B-11%7D%5D%3D-%5Cfrac%20%7BQ_v%7D%7B1.38%5Ctimes%2010%5E%7B-23%7D%5Ctimes%20698.15%7D)

Moisture content is measured in terms of pounds of water per pound of air (lb water/lb air) or grains of water per pound of air (gr. of water/lb air).
Hope this helps❤
Answer:
(b)False
Explanation:
Given:
Prandtl number(Pr) =1000.
We know that 
Where
is the molecular diffusivity of momentum
is the molecular diffusivity of heat.
Prandtl number(Pr) can also be defined as

Where
is the hydrodynamic boundary layer thickness and
is the thermal boundary layer thickness.
So if Pr>1 then hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.
In given question Pr>1 so hydrodynamic boundary layer thickness will be greater than thermal boundary layer thickness.
So hydrodynamic layer will be thicker than the thermal boundary layer.