Aspartame (C₁₄H₁₈N₂O₅) is a solid used as an artificial sweetener. its combustion produces carbon dioxide gas, liquid water, and nitrogen gas
C₁₄H₁₈N₂O₅ + 16O₂-----> 14CO₂ + 9H₂O + N₂.
As it can be seen from the equation, that the coefficient of nitrogen gas in the balanced equation for the reaction is 1.
So the answer here is 1 only that is coefficient of nitrogen gas in the balanced equation for the reaction is 1.
The best and most correct answer among the choices provided by your question is the second choice or letter B.
The iron cam is larger than the aluminum cam even if with the same size.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
The average kinetic energy of an ideal gas is calculated as
KE_avg = 3/2 kT
where T is the temperature in Kelvin and k=R/N_A; R is the universal gas constant and N_A is the number of moles.
Thus, upon substitution we get
KE_avg = 3/2(8.314/1)(100+273)
KE_avg = 3/2(8.314)(373)
KE_avg = 4651.683
The average kinetic energy of 1 mole of a gas at 100 degree Celsius is 4651.683 J.
Answer:
If you help I'll help you deal?
<u>Answer:</u> The rate law expression is
and value of 'k' is 
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[NO]^a[O_2]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5Ea%5BO_2%5D%5Eb)
where,
a = order with respect to nitrogen monoxide
b = order with respect to oxygen
- <u>Expression for rate law for first observation:</u>
....(1)
- <u>Expression for rate law for second observation:</u>
....(2)
- <u>Expression for rate law for third observation:</u>
....(3)
Dividing 1 from 2, we get:

Dividing 1 from 3, we get:

Thus, the rate law becomes:
![\text{Rate}=k[NO]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BNO%5D%5E2%5BO_2%5D%5E1)
Now, calculating the value of 'k' by using any expression.
Putting values in equation 1, we get:
![8.55\times 10^{-3}=k[0.030]^2[0.0055]^1\\\\k=1.727\times 10^3M^{-2}s^{-1}](https://tex.z-dn.net/?f=8.55%5Ctimes%2010%5E%7B-3%7D%3Dk%5B0.030%5D%5E2%5B0.0055%5D%5E1%5C%5C%5C%5Ck%3D1.727%5Ctimes%2010%5E3M%5E%7B-2%7Ds%5E%7B-1%7D)
Hence, the rate law expression is
and value of 'k' is 