Answer: In gases the particles move rapidly in all directions, frequently colliding with each other and the side of the container. With an increase in temperature, the particles gain kinetic energy and move faster. The actual average speed of the particles depends on their mass as well as the temperature – heavier particles move more slowly than lighter ones at the same temperature. The oxygen and nitrogen molecules in air at normal room temperature are moving rapidly at between 300 to 400 metres per second. Unlike collisions between macroscopic objects, collisions between particles are perfectly elastic with no loss of kinetic energy.
Explanation: This is very different to most other collisions where some kinetic energy is transformed into other forms such as heat and sound. It is the perfectly elastic nature of the collisions that enables the gas particles to continue rebounding after each collision with no loss of speed. Particles are still subject to gravity and hit the bottom of a container with greater force than the top, and giving gases weight. Hope this helps with your problem! Byeeee :DDD
Answer:
Q1 part D Q2 part B
Explanation:
After the chemical reaction, the things that you get are known as products.
Answer: B
. particle size
Explanation:
Let's begin by explaining that a molecular sieve is a device, whose composition allows the absorbtion of molecules that are small enough to pass through its pores, since it is made up of small pores of a precise and uniform size.
Thus, very small molecules manage to pass through the pores of the sieve, while large ones do not.
So, based on this premise, a molecular sieve separates the substances by their size.
Hence, the correct option is B.
Answer:
A = -213.09°C
B = 15014.85 °C
C = -268.37°C
Explanation:
Given data:
Initial volume of gas = 5.00 L
Initial temperature = 0°C (273 K)
Final volume = 1100 mL, 280 L, 87.5 mL
Final temperature = ?
Solution:
Formula:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Conversion of mL into L.
Final volume = 1100 mL/1000 = 1.1 L
Final volume = 87.5 mL/1000 = 0.0875 L
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 1.1 L × 273 K / 5.00 L
T₂ = 300.3 L.K / 5.00 K
T₂ = 60.06 K
60.06 K - 273 = -213.09°C
2)
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 280 L × 273 K / 5.00 L
T₂ = 76440 L.K / 5.00 K
T₂ = 15288 K
15288 K - 273 = 15014.85 °C
3)
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 0.0875 L × 273 K / 5.00 L
T₂ = 23.8875 L.K / 5.00 K
T₂ = 4.78 K
4.78 K - 273 = -268.37°C