Answer:
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Explanation:
<u>Step 1</u>: Data given
Mass of the metal = 21 grams
Volume of water = 100 mL
⇒ mass of water = density * volume = 1g/mL * 100 mL = 100 grams
Initial temperature of metal = 122.5 °C
Initial temperature of water = 17°C
Final temperature of water and the metal = 19 °C
Heat capacity of water = 4.184 J/g°C
<u />
<u>Step 2: </u>Calculate the specific heat capacity
Heat lost by the metal = heat won by water
Qmetal = -Qwater
Q = m*c*ΔT
m(metal) * c(metal) * ΔT(metal) = - m(water) * c(water) * ΔT(water)
21 grams * c(metal) *(19-122.5) = -100 * 4.184 * (19-17)
-2173.5 *c(metal) = -836.8
c(metal) = 0.385 J/g°C
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Answer:
7. .........................
Answer:
77,007 Pa
Explanation:
Hello!
In this case, since the equivalence statement for atmospheres and pascals is:
1 atm = 101,325 Pa
We can set up the following conversion factor to obtain the pressure in pascals:

Best regards!
Answer:
Reliability. When a scientist repeats an experiment with a different group of people or a different batch of the same chemicals and gets very similar results then those results are said to be reliable. Reliability is measured by a percentage – if you get exactly the same results every time then they are 100% reliable.
Explanation:
Sorry, I only got one way.
<span><span>There is no formula. The speed of light is a fundamental constant which appears in other formulas but there’s no formula to compute the numerical value.Well, actually, that’s not quite right. The numerical value in meters per second is known exactly, because we use the speed of light to define the meter. It is: <span><span><span>c=299,792,458 m/s</span><span>c=299,792,458 m/s</span></span>
</span>. Exactly. But the thing is — this value is purely an artifact of our unit system. Other unit systems will give other values, so the number value is entirely arbitrary.</span></span>