1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VLD [36.1K]
3 years ago
15

I am having trouble with writing a 2 paragraph summary about this vidio can someone help me

Physics
1 answer:
sveticcg [70]3 years ago
3 0

Answer:

hmmm  ok

Explanation:

You might be interested in
A (20*20) cm² loop has a resistance of 0.10 Ω. A magnetic field perpendicular to the loop is B = 4t - 2t², where B is in tesla a
Ilya [14]

Answer with Explanation:

We are given that

Area of loop=(20\times 20) cm^2=400\times 10^{-4} m^2

1 cm^2=10^{-4} m^2

Resistance, R=0.1\Omega

B=4t-2t^2

We know that magnetic flux

\phi=BA

Emf ,E=\mid \frac{d\phi}{dt}\mid =\mid\frac{d(BA}{dt}\mid =\mid A\frac{dB}{dt}=400\times 10^{-4}\times \frac{4t-2t^2}{dt}\mid =\mid400\times 10^{-4}\times(4-4t)\mid

Current, I=\frac{E}{R}

Current, I=\frac{\mid 400\times 10^{-4}(4-4t)\mid }{0.1}=1.6\mid (1-t)\mid

Substitute t=0 s

Then, I=1.6\mid (1-0)\mid=1.6 A

Substitute t=1 s

Then, I=1.6\mid (1-1)\mid=0

Substitute

t=2 s

Current, I=1.6\mid(1-2)\mid=1.6 A

8 0
3 years ago
Read 2 more answers
A 580-turn solenoid is 18 cm long. The current in it is 36 A. A straight wire cuts through the center of the solenoid, along a 2
Karolina [17]

Answer:

F = 0.078N

Explanation:

In order to calculate the magnitude of the force on the wire you first calculate the magnitude of the magnetic field generated by the solenoid, by using the following formula:

B=\frac{\mu_oNi}{L}         (1)

μo: magnetic permeability of vacuum = 4π*10^-7 T/A

N: turns of the solenoid = 580

i: current in the solenoid = 36A

L: length of the solenoid = 18cm = 0.18m

You replace the values of all parameters in the equation (1):

B=\frac{(4\pi*10^{-7}T/A)(580)(36A)}{0.18m}=0.145T

Next, you calculate the force exerted on the wire, by using the following formula:

F=iLBsin\theta         (2)

i: current in the wire = 27A

L: length of the wire that perceives the magnetic field (the same as the radius of the solenoid) = 2.0 cm = 0.02m

θ: angle between wire and the direction of B

B: magneitc field in the solenoid = 0.145T

The direction of the wire are perpendicular to the direction of the magnetic field, hence, the angle is 90°.

You replace the values of the parameters in the equation (2):

F=(27A)(0.02m)(0.145T)sin90\°=0.078N

The magnitude of the force on the wire is 0.078N

8 0
4 years ago
Read 2 more answers
I would love to stretch a wire from our house to the Shop so I can 'call' my husband in for meals. The wire could be tightened t
dezoksy [38]
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".

Solution:
The fundamental frequency in a standing wave is given by
f= \frac{1}{2L} \sqrt{ \frac{T}{m/L} }
where L is the length of the string, T the tension and m its mass. If  we plug the data of the problem into the equation, we find
f= \frac{1}{2 \cdot 24 m} \sqrt{ \frac{240 N}{0.05 kg/m} }=1.44 Hz

The wavelength of the standing wave is instead twice the length of the string:
\lambda=2 L= 2 \cdot 24 m=48 m

So the speed of the wave is
v=\lambda f = (48 m)(1.44 Hz)=69.1 m/s

And the time the pulse takes to reach the shop is the distance covered divided by the speed:
t= \frac{L}{v}= \frac{24 m}{69.1 m/s}=0.35 s
7 0
4 years ago
A car accelerates from rest, and travels 400 m in 3.5 seconds. If
zheka24 [161]

Answer:

A car accelerates from rest, and travels 400 m in 3.5 seconds. If

the net force on the car is 12,000 N what is the mass of the car? bzgs dvd d dv dvdvd dhd dbvd

Explanation:

shd dhd bdvd dhdbduhdbdhdbbdceudd f

3 0
3 years ago
A 46.8-g golf ball is driven from the tee with an initial speed of 58.8 m/s and rises to a height of 24.7 m. (a) Neglect air res
Andre45 [30]

Answer:

a) the kinetic energy of the ball at its highest point is 69.58 J

b) its speed when it is 8.11 m below its highest point is 55.97 m/s

Explanation:

Given that;

mass of golf ball m = 46.8 g = 0.0468 kg

initial speed of the ball v₁ = 58.8 m/s

height h = 24.7 m

acceleration due to gravity = 9.8 m/s²

the kinetic energy of the ball at its highest point = ?

from the conservation of energy;

Kinetic energy at the highest point will be;

K.Ei + P.Ei = KEf + PEf

now the Initial potential energy of the ball P.Ei = 0 J

so

1/2mv² + 0 J = KEf + mgh

K.Ef = 1/2mv² - mgh

we substitute

K.Ef = [1/2 × 0.0468 × (58.8 )²] - [0.0468 × 9.8 × 24.7]

K.Ef  = 80.904 - 11.3284

K.Ef = 69.58 J

Therefore, the kinetic energy of the ball at its highest point is 69.58 J

b) when the ball is 8.11 m below the highest point, speed = ?

so our raw height h' will be ( 24.7 m - 8.11 m) = 16.59 m

so our velocity will be v₂

also using the principle of energy conservation;

K.Ei + P.Ei = KEh + PEh

1/2mv² + 0 J = 1/2mv₂² + mgh'

1/2mv₂² = 1/2mv² - mgh'

multiply through by 2/m

v₂² = v² - 2gh'

v₂ = √( v² - 2gh' )

we substitute

v₂ = √( (58.8)² - 2×9.8×16.59 )

v₂ = √( 3457.44 - 325.164 )  

v₂ = √( 3132.276 )

v₂ = 55.97 m/s

Therefore, its speed when it is 8.11 m below its highest point is 55.97 m/s

5 0
3 years ago
Other questions:
  • While standing at the edge of the roof of a building, you throw a stone upward with an initial speed of 5.55 m/s. The stone subs
    14·1 answer
  • The terminals of a 0.70 Vwatch battery are connected by a 80.0-m-long gold wire with a diameter of 0.200 mm What is the current
    11·1 answer
  • Which statement are true about moving the compass around the wire? Check all that apply
    11·2 answers
  • A light beam shines through a slit and illuminates a distant screen. The central bright fringe on the screen is 1.00 cm wide, as
    7·1 answer
  • A 13.5 μF capacitor is connected to a power supply that keeps a constant potential difference of 22.0 V across the plates. A pie
    5·1 answer
  • The force of air particles over an area is?
    11·2 answers
  • What is the nergy of a wave that has a<br> frequency of 6.32 x 10^20 Hz?
    15·1 answer
  • Find the equation of the line below.
    10·1 answer
  • - A thin film of oil * (n = 1.45) on a puddle of water, producing different colors. What is the minimum thickness of a place whe
    6·1 answer
  • 1) A rock is dropped from a cliff with a height of 200 m. With what velocity will the rock hit the ground
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!