To solve this problem we will begin by finding the pressure through density and average depth. Later we will find the Force, by means of the relation of the pressure and the area.

Here,
h = Depth average
= Density
Moreover,

Replacing,


Finally the force



This is fairly easy. The earlier view of the solar system (geocentric) was all based on how other planets and the sun were constantly revolving the earth and we were completely stationary. The Heliocentric view has been proved to be accurate, and it is that the sun is stationary and the planets are revolving it. The similarities are that in that time, it was a continued belief that the planets were the Roman Gods, i.e. Jupiter, Neptune. Another thing is that they were correct in the Geocentric theory with the thought that the planets revolved around something.
Answer:
150m
Explanation:
The relation of speed/time and distance/time is a derivative/integral one, as in speed is the derivative of distance (the faster you go, the faster the distance changes, duh!).
So we need to compute the integral of speed over time from 0.0s to 5.0s.
The easiest way here is to compute the area under the line (it's going to be faster than computing the acceleration and using a formula of distance based on acceleration).
The area under the line is a trapezoid with "height" 5s, and the bases 10m/s and 50m/s. Using the trapezoid area formula of h*(a + b)/2
distance = 5s * (10m/s + 50m/s) / 2 = 5s * 60m/s / 2 = 5s * 30m/s = 150m
Alternatively, we can use the acceleration formula:
a = (50m/s - 10m/s)/5s = 40m/s / 5s = 8m/s^2
distance = v0 * t + a * t^2 / 2 = 10m/s * 5s + 8m/s^2 * (5s)^2 / 2 = 50m + 8m * 25 / 2 = 50m + 100m = 150m.
The unit 'mb' means millibar which is equivalent to 1/1000 of 1 bar. To convert the units from bar to atmospheres (atm) and to inches Hg (inHg), we need to know the conversion factors.
a.) 1 atm = 1.01325 bar
0.92 mb(1 bar/1000 mbar)(1 atm/1.01325 bar) =<em> 9.08×10⁻⁴ atm</em>
b.) 1 bar = 29.53 inHg
0.92 mb(1 bar/1000 mbar)(29.53 inHg/1 bar) =<em> 0.027 inHg</em>