Answer:
Explanation:
Given
Weight of roller coaster is 
mass of roller coaster 
Distance traveled by roller coaster 
drag force 
velocity at top 
Suppose E is the initial energy
Conserving Energy at bottom and top



To answer the problem we would be using this formula which isE = hc/L where E is the energy, h is Planck's constant, c is the speed of light and L is the wavelength
L = hc/E = 4.136×10−15 eV·s (2.998x10^8 m/s)/10^4 eV
= 1.240x10^-10 m
= 1.240x10^-1 nm
Answer:
c. is more than that of the fluid.
Explanation:
This problem is based on the conservation of energy and the concept of thermal equilibrium

m= mass
s= specific heat
\DeltaT=change in temperature
let s1= specific heat of solid and s2= specific heat of liquid
then
Heat lost by solid= 
Heat gained by fluid=
Now heat gained = heat lost
therefore,
1000 S_2=800 S_1
S_1=1.25 S_2
so the specific heat of solid is more than that of the fluid.