For every action, there is an equal and opposite reaction. For example, take a cup on a table. The weight of the cup is the action, and the reason the cup does not sink through the table is because the table exerts an equal reaction force which is opposite to the action of the cup.
Hope this helps!
Average speed = (total distance covered) / (time to cover the distance)
= (50 miles) / (1.5 hours)
= (50/1.5) miles/hours
= (33 and 1/3) mph .
We don't care about all that other "data" given earlier in the question.
We only need to know the total distance covered and the time it took
to cover the distance.
Answer:
0.09 s
Explanation:
From the second equation of motion,

Here, u is the initial velocity, a is the acceleration due to gravity, t is time taken, and S is the total displacement or distance.
From the given problem,
initial velocity is zero for both the case.
And the distance of twin tower of malaysia is, 
And the distance of Sears tower of Chicago is, 
Now,rearrange the distance equation for t.

So time difference.

Therefore, the difference in time, object will reach the ground is 0.09 s
Answer:
The correct answer is: 0°C + 0°C = 32°F
Explanation:
We need to remember the conversion equation from Celsius to Fahrenheit:

In our case x = 0, then y will be:


Now 0°C + 0°C is just 0°C because if we add a body at a certain temperature to another body with the same temperature the total temperature will the same.
Then, knowing that 0°C = 32°F we can conclude that:

I hope it helps you!
According to Newton's 3rd law, there will be equal and opposite force on the astronaut which is -6048 N
<h3>
What does Newton's third law say ?</h3>
The law state that in every action, there will be equal and opposite reaction.
Given that a rocket takes off from Earth's surface, accelerating straight up at 69.2 m/s2. We are to calculate the normal force (in N) acting on an astronaut of mass 87.4 kg, including his space suit.
Let us first calculate the force involved in the acceleration of the rocket by using the formula
F = ma
Where mass m = 87.4 kg, acceleration a = 69.2 m/s2
Substitute the two parameters into the formula
F = 87.4 x 69.2
F = 6048.08 N
According to the Newton's 3rd law, there will be equal and opposite force on the astronaut.
Therefore, the normal force acting on the astronaut is -6048 N approximately
Learn more about forces here: brainly.com/question/12970081
#SPJ1