Yes, it ca,n <span>if it has been cooled to very low temperatures</span>
Answer:
The pH of the solution is 4.69
Explanation:
Given that,
Mass of potassium = 2.643 grams
Weight of water = 50.00 mL
Weight of HCl=100.00 ml
Mole = 0.120 M
We know that,
is a basic salt.
Let's write it as KY.
The acid
would become HY.
We need to calculate the moles of KY
Using formula of moles



The reaction is

The number of moles of KY is 20.98 m
initial moles = 20.98
Final moles 
We need to calculate the value of pKa(HY)
Using formula for pKa(HY)



We need to calculate the pH of the solution
Using formula of pH
![pH=pKa+log(\dfrac{[KY]}{[KH]})](https://tex.z-dn.net/?f=pH%3DpKa%2Blog%28%5Cdfrac%7B%5BKY%5D%7D%7B%5BKH%5D%7D%29)
Put the value into the formula


Hence, The pH of the solution is 4.69
Answer:
113 g NaCl
Explanation:
The Ideal Gas Law equation is:
PV = nRT
In this equation,
> P = pressure (atm)
> V = volume (L)
> n = number of moles
> R = 8.314 (constant)
> T = temperature (K)
The given values all have to due with the conditions fo F₂. You have been given values for all of the variables but moles F₂. Therefore, to find moles F₂, plug each of the values into the Ideal Gas Law equation and simplify.
(1.50 atm)(15.0 L) = n(8.314)(280. K)
2250 = n(2327.92)
0.967 moles F₂ = n
Using the Ideal Gas Law, we determined that the moles of F₂ is 0.967 moles. Now, to find the mass of NaCl that can react with F₂, you need to (1) convert moles F₂ to moles NaCl (via the mole-to-mole ratio using the reaction coefficients) and then (2) convert moles NaCl to grams NaCl (via molar mass from periodic table). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator).
1 F₂ + 2 NaCl ---> Cl₂ + 2NaF
Molar Mass (NaCl): 22.99 g/mol + 35.45 g/mol
Molar Mass (NaCl): 58.44 g/mol
0.967 moles F₂ 2 moles NaCl 58.44 g
---------------------- x ----------------------- x ----------------------- = 113 g NaCl
1 mole F₂ 1 mole NaCl
Metal usually donates electrons. The concept behind this phenomenon is stability. The elements with the most stable electronic configuration are the noble gases in Group 5A. As a result, the other elements donate or accept electrons so that they would be like the noble gases. Since metals are past their nearest noble gas element, they have to shed their electrons. When they do, they become cations which are positively charged ions.
Answer:
c is the answer
step by step explanation is not