<span>The sprinter is advised to reduce his speed slowly after
completing the race because of the power that is needed when the stoppage is
down in a faster manner could be very great. This would translate to the great
usage in gasoline. Also, the inertia of the vehicle is quiet high so it is hard
to stop it very suddenly. </span>
Answer:
use a calculator to solve that
To solve this problem it is necessary to apply the concept related to wavelength, specifically when the wavelength is observed from a source that is in motion to the observer.
By definition the wavelength is given defined by,

Where
= Observed wavelength
= Wavelength of the source
c = Speed of light in vacuum
u = Relative velocity of the source to the observer
According to our data we have that the wavelength emitted from the galaxy is 1875nm which is equal to the wavelength from the source, while the wavelength from the observer is 
Therefore replacing in the previous equation we have,




Solving for u,







Therefore the speed of the gas relative to earth is 0.02635 times the speed of light.
Answer:
337k
Explanation:
First, let us find the difference between the given two temperatures.
Difference = 85°C - 21°C
= 64°C
<u>And now we have to write the temperature in kelvins.</u>
To convert Celcius to Kelvins you can add 273 to the temperature in Celcius.
<u>Let us find it now.</u>
64°C + 273 = 337k
Therefore,
64°C ⇒ <u>337k</u>
<span>The reason that the balloon will stick to the wall is because the negative charges in the balloon will make the electrons in the wall move to the other side of their atoms and this leaves the surface of the wall positively charged.</span>