Answer:
v = 18.84 m/s
Explanation:
Given that,
The length of the string, r = 1.5 m (it will act as radius)
The rubber stopper makes 120 complete circles every minute.
Since, 1 minute = 60 seconds
It means, its frequency is 2 circles every second.
Let we need to find the average speed of the rubber stopper. It can be calculated as follows :

d is distance,
and 1/T = f (frequency)

So, the average speed of the rubber stopper is 18.84 m/s.
Upward and downward forces cancel out. Net force is 8 newtons to the right
<u>Given </u><u>:</u><u>-</u>
- An elevator is moving vertically up with an acceleration a.
<u>To </u><u>Find</u><u> </u><u>:</u><u>-</u>
- The force exerted on the floor by a passenger of mass m .
<u>Solution</u><u> </u><u>:</u><u>-</u>
As the man is in a accelerated frame that is <u>non </u><u>inertial</u><u> frame</u><u> </u>, we would have to think of a pseudo force .
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
For the FBD refer to the attachment . From that ,
<u>Hence</u><u> </u><u>option</u><u> </u><u>d </u><u>is </u><u>correct</u><u> </u><u>choice </u><u>.</u>
<em>I </em><em>hope</em><em> this</em><em> helps</em><em> </em><em>.</em>