Answer:
Newton's First Law states that an object in motion will stay in motion, an object at rest will stay at rest, at a constant velocity, unless an unbalanced force acts upon it.
Newtons First law of motion has to do with seat belts because think about it, what happens when we don't wear a seat belt and our vehicle comes to a quick stop. What happens to you? You move forward and stay in motion until an unbalanced force acts upon you. Now what is an unbalanced force? An unbalanced force is one that is not opposed by an equal and opposite force operating directly against the force intended to cause a change in the object's state of motion or rest. So, when you come to a stop, you wouldn't stop motion unless a force is caused to change your motion and put you at rest. If you were wearing a seat belt, the seat belt would act as the unbalanced force, it would stop you from being in motion.
Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.
As the temperature of a liquid increases, its viscosity decreases.
Answer:
H+ and NO3- ions
Explanation:
The Pb²+ ions react with the SO4²‐ ions to form a solid precipitate, i.e. they bond together and undergo a phase change;
On the contrary, the H+ and NO3- ions are aqueous ions before the reaction and the same after the reaction, i.e. they don't change;
Hence, the H+ and NO3- ions are spectator ions
The way to do this type of question is to consider what changes and what doesn't, look at phase changes and oxidation state changes