Answer:
For a Singular matrix, the determinant must be equivalent to 0.
Explanation:
A matrix is a rectangular array in which elements are arranged in rows and columns.
Each square matrix has a determinant. The determinant is a numerical idea that has a fundamental function in finding the arrangement just as investigation of direct conditions. For a Singular matrix, the determinant must be equivalent to 0.
Answer: The complete part of the question is to find the exit velocity
Explanation:
Given the following parameters
Inlet pressure = 700kpa
outlet pressure = 40kpa
Temperature = 80°C = 353k
mass flow rate = 1 kg/s
The application of the continuity and the bernoulli's equation is employed to solve the problem.
The detailed steps and the appropriate formula is as shown in the attached file.
Assuming V1 is the anode and v2 the cathode (Anode is P region and Cathode is N)
Answer:
a) Reverse bias
b) Forward bias
c) Forward bias
Explanation:
Forward bias: It happens whenever the N region of the diode is more positive than the P region. Hence, the depletion zone increase ceasing the current through the circuit -> V1 -V2 < 0
Reverse bias: It happens whenever the P region of the diode is more positive than the N region. In this case, the depletion zone begins to shrink, if enough voltage is applied current could go through the circuit -> V1 - V2 > 0
a) V = V1 - V2 = 0 - 2 = -2 -> -2 is smaller than zero therefore, we have reverse bias
b) V = V1 - V2 = 4.5 - 2.8 = 1.7 -> 1.7 is greater than zero therefore, we have forward bias
c9 V = V1 - V2 = -1 - -1.3 = 0.3 -> 0.3 is greater than zero therefore, we have forward bias