Answer:
Temperature : 92.9 F
Internal Energy change: -2.53 Btu/lbm
Explanation:
As
mh1=mh2
h1=h2
In table A-11 through 13E
p2=120Psi, h1= 41.79 Btu/lbm,
u1=41.49
So T1=90.49 F
P2=20Psi
h2=h1= 41.79 Btu/lbm
T2= -2.43F
u2= 38.96 Btu/lbm
T2-T1 = 92.9 F
u2-u1 = -2.53 Btu/lbm
Answer:
The value is
Explanation:
From the question we are told that
The mass of the object is
The unstressed length of the string is
The length of the spring when it is at equilibrium is
The initial speed (maximum speed)of the spring when given a downward blow
Generally the maximum speed of the spring is mathematically represented as
Here A is maximum height above the floor (i.e the maximum amplitude)
and is the angular frequency which is mathematically represented as
So
=>
Gnerally the length of the compression(Here an assumption that the spring was compressed to the ground by the hammer is made) by the hammer is mathematically represented as
=>
=>
Generally at equilibrium position the net force acting on the spring is
=>
=>
So
=>
Answer:
Option C - 39.2 J
Explanation:
We are given that;
Mass; m = 2 kg.
Distance moved off the floor;d = 10 m.
Acceleration due to gravity;g = 9.8 m/s².
We want to find the work done.
Now, the Formula for work done is given by;
Work = Force × displacement.
In this case, it's force of gravity to lift up the boots, thus;
Formula for this force is;
Force = mass x acceleration due to gravity
Force = 2 × 9.8 = 19.2 N
∴ Work done = 19.6 × 2
Work done = 39.2 J.
Hence, the Work done to life the boot of 2 kg to a height of 2 m is 39.2 J.
It’s going to be both answer A and B but if you can only answer one then it’s going to be B
Answer:
c
Explanation:
cuz its informing the length of 5 and weight on 20N