1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tia_tia [17]
3 years ago
15

The invention of the microscope made it possible for people to discover

Physics
2 answers:
Sliva [168]3 years ago
8 0

d. cells It’s 100% right

Katyanochek1 [597]3 years ago
4 0
D cells!!!!!!!!!!!!
hope that helps
You might be interested in
Someone please help really confused
Taya2010 [7]

Answer:

answer c: a mass and volume

Explanation:

no matter what elements are chosen, they all have a mass and volume measurement I believe

5 0
2 years ago
The ink drops have a mass m = 1.00×10^−11 kg each and leave the nozzle and travel horizontally toward the paper at velocity v =
luda_lava [24]

Answer:

9.98 × 10⁻⁹ C

Explanation:

mass, m = 1.00 × 10⁻¹¹ kg

Velocity, v = 23.0 m/s

Length of plates D₀ = 1.80 cm = 0.018 m

Magnitude of electric field, E = 8.20 × 10⁴ N/C

drop is to be deflected a distance d = 0.290 mm = 0.290 × 10⁻³ m

density of the ink drop = 1000 kg/m^3

Now,

Time = \frac{\textup{Distance}}{\textup{Velocity}}

or

Time = \frac{\textup{0.016}}{\textup{23}}

or

Time = 6.9 × 10⁻⁴ s

Now, force due to the electric field, F = q × E

where, q is the charge

Also, Force = Mass × acceleration

q × E = 1.00 × 10⁻¹¹ × a

or

a = \frac{q\times8.20\times10^4}{1\times10^{-11}}

Now from the Newton's equation of motion

d=ut+\frac{1}{2}at^2

where,  

d is the distance

u is the initial speed  

a is the acceleration

t is the time

or

0.290\times10^{-3}=0\times(6.9\times10^{-4})+\frac{1}{2}\times(\frac{q\times8.20\times10^4}{1\times10^{-11}})\times(6.9\times10^{-4})^2

or

q = 9.98 × 10⁻⁹ C

4 0
3 years ago
A bug is sitting on the edge of a rotating disk. At what angular velocity will the bug slide off the disk if its radius is 0.241
Ivahew [28]

Answer:

ω = 3.61 rad/sec

Explanation:

Firstly, we should know that the bug will not slip if friction can provide sufficient opposing force.

μmg = mv^2/r = mω^2r

Thus;

μg = ω^2r

ω^2 = μg/r

ω = √(μg/r)

ω = √(0.321 * 9.8)/0.241

ω = √(13.05)

= 3.61 rad/sec

3 0
3 years ago
Nitrogen at 100 kPa and 25oC in a rigid vessel is heated until its pressure is 300 kPa. Calculate (a) the work done and (b) the
nignag [31]

Answer:

A. The work done during the process is W = 0

B. The value of heat transfer during the process Q = 442.83 \frac{KJ}{kg}

Explanation:

Given Data

Initial pressure P_{1} = 100 k pa

Initial temperature T_{1} = 25 degree Celsius = 298 Kelvin

Final pressure P_{2} = 300 k pa

Vessel is rigid so change in volume of the gas is zero. so that initial volume is equal to final volume.

⇒ V_{1} = V_{2} ------------- (1)

Since volume of the gas is constant so pressure of the gas is directly proportional to the temperature of the gas.

⇒ P ∝ T

⇒ \frac{P_{2} }{P_{1}} = \frac{T_{2} }{T_{1}}

⇒ Put all the values in the above formula we get the final temperature

⇒ T_{2} = \frac{300}{100} × 298

⇒ T_{2} = 894 Kelvin

(A). Work done during the process is given by W = P × (V_{2} -V _{1})

From equation (1), V_{1} = V_{2} so work done W = P × 0 = 0

⇒ W = 0

Therefore the work done during the process is zero.

Heat transfer during the process is given by the formula Q = m C_{v} ( T_{2} -T_{1} )

Where m = mass of the gas = 1 kg

C_{v} = specific heat at constant volume of nitrogen = 0.743 \frac{KJ}{kg k}

Thus the heat transfer Q = 1 × 0.743 × ( 894- 298 )

⇒ Q = 442.83 \frac{KJ}{kg}

Therefore the value of heat transfer during the process Q = 442.83 \frac{KJ}{kg}

6 0
3 years ago
A horizontal 826 N merry-go-round of radius 1.17 m is started from rest by a constant horizontal force of 57.8 N applied tangent
Julli [10]

Answer:

The kinetic energy of the merry-go-round is \bf{475.47~J}.

Explanation:

Given:

Weight of the merry-go-round, W_{g} = 826~N

Radius of the merry-go-round, r = 1.17~m

the force on the merry-go-round, F = 57.8~N

Acceleration due to gravity, g= 9.8~m.s^{-2}

Time given, t=3.47~s

Mass of the merry-go-round is given by

m &=& \dfrac{W_{g}}{g}\\~~~~&=& \dfrac{826~N}{9.8~m.s^{-2}}\\~~~~&=& 84.29~Kg

Moment of inertial of the merry-go-round is given by

I &=& \dfrac{1}{2}mr^{2}\\~~~&=& \dfrac{1}{2}(84.29~Kg)(1.17~m)^{2}\\~~~&=& 57.69~Kg.m^{2}

Torque on the merry-go-round is given by

\tau &=& F.r\\~~~&=& (57.8~N)(1.17~m)\\~~~&=& 67.63~N.m

The angular acceleration is given by

\alpha &=& \dfrac{\tau}{I}\\~~~&=& \dfrac{67.63~N.m}{57.69~Kg.m^{2}}\\~~~&=& 1.17~rad.s^{-2}

The angular velocity is given by

\omega &=& \alpha.t\\~~~&=& (1.17~rad.s^{-2})(3.47~s)\\~~~&=& 4.06~rad.s^{-1}

The kinetic energy of the merry-go-round is given by

E &=& \dfrac{1}{2}I\omega^{2}\\~~~&=&\dfrac{1}{2}(57.69~Kg.m^{2})(4.06~rad.s^{-1})^{2}\\~~~&=& 475.47~J

5 0
3 years ago
Other questions:
  • When the displacement of a mass on a spring is 1/2a the half of the amplitude, what fraction of the mechanical energy is kinetic
    8·2 answers
  • An airplane flies in a loop (a circular path in a vertical plane) of radius 160 m . The pilot's head always points toward the ce
    12·1 answer
  • Scientists classify rocks by
    7·1 answer
  • You decide you want to carry a boulder home from the beach it is 30 centimeter on each side. It is made of granite, which has a
    5·1 answer
  • What matter does not take up the space in the container?
    14·1 answer
  • Why are vectors so important?
    13·1 answer
  • Which light wave could be emitted from Light Source 2?<br> A<br> B<br> C<br><br> explain your answer
    14·2 answers
  • Two point charges are placed on the x-axis as follows: charge q1 = 3.95 nC is located at x= 0.198 m , and charge q2 = 4.96 nC is
    10·1 answer
  • An angle of refraction is the angle between the refracted ray and the
    8·2 answers
  • Name the energy possessed by hot air
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!