The analogous formula for magnetic fields is the Ampere's law.
To find the answer, we need to know about the Ampere's law of magnetism.
<h3>What's Ampere's law of magnetism?</h3>
Ampere's law states that the close line integral of magnetic field around a current carrying loop is directly proportional to the current enclosed within it.
<h3>What's is the mathematical expression of Ampere's law?</h3>
Mathematically, Ampere's law is
B•dl= μ₀I
Thus, we can conclude that the analogous formula for gauss law is the Ampere's law in magnetism.
Learn more about the Ampere's law here:
brainly.com/question/17070619
#SPJ4
Answer:
lesser time
Explanation:
The latent heat of fusion is defined as the amount of heat required to convert 1 gram of water into 1 gram of ice at constant temperature called melting point.
In this situation only the state of matter is changed, the temperature of the substance remains constant.
A liquid has lower latent heat rather than water, it means it requires lesser amount of heat to fuse it , so it requires lesser amount of time to melt the ice made by this liquid.
So, it requires lesser time.
Answer:
No
Explanation:
From the analogy of the problem we are made to know that "a man standing on the earth can exert the same force with his legs as when he is standing on the moon".
This force he is exerting is due to his weight. If he can have the same weight on the earth and moon, therefore:
weight = mass x acceleration due gravity
His mass and acceleration due to gravity on both terrestrial bodies are the same.
So, his jump height will be the same on earth and on the moon.
In summary, we have been shown that his mass and the acceleration due to gravity on both planets are the same, therefore, his weight will also be the same. His jump height will also be same.
The answer is D, because the collision's between molecules are elastic, not inelastic.
Answer:
The Cosmic Microwave Background radiation, or CMB for short, is a faint glow of light that fills the universe, falling on Earth from every direction with nearly uniform intensity. It is the residual heat of creation--the afterglow of the big bang--streaming through space these last 14 billion years like the heat from a sun-warmed rock, reradiated at night.
Since the early twentieth century, two concepts have transformed the way astronomers think about observing the universe. The first is that it is fantastically large; the portion of the universe visible today is a sphere nearly 15 billion light-years in radius, and that, we believe, is just the tip of the iceberg. The second is that light travels at a fixed speed. A simple consequence of these ideas is that as you look at more and more distant objects, you're seeing farther and farther back in time--sometimes very far back indeed. When you see Jupiter shining in the night sky, for example, you're looking about an hour back in time, whereas the light from distant galaxies captured by telescopes today was emitted millions of years ag0.
Explanation: