The circulatory system is important in meeting the needs of all cells in the body because it offers means of transport by which cells obtain the materials needed to live and function.
The functions of the circulatory system by which the cells are supported include:
1. Respiration- oxygen is delivered to the cells and carbon dioxide is removed from them.
2. Nutrition- nutrients for energy are supplied to every cell in the body.
3. Waste removal- metabolic waste products are taken away before they accumulate and become harmful to the cells.
4. Cellular communication- hormones are transported to the cells and organs that need them for proper functioning.
5.Thermoregulation- As blood circulates, it keeps body temperature balanced and thus cells are able to carry out processes well.
Answer: 20 kgm/s
Explanation:
Given that M1 = M2 = 10kg
V1 = 5 m/s , V2 = 3 m/s
Since momentum is a vector quantity, the direction of the two object will be taken into consideration.
The magnitude of their combined
momentum before the crash will be:
M1V1 - M2V2
Substitute all the parameters into the formula
10 × 5 - 10 × 3
50 - 30
20 kgm/s
Therefore, the magnitude of their combined momentum before the crash will be 20 kgm/s
Answer:
A police radar gun uses X-band microwave radiation at a frequency of 13.1 GHz. Microwaves travel at the speed of light, or 3x108 m/s. Since the frequency shift will be small for practical car speeds and difficult to detect, the shifted frequency is compared to the original frequency, and the resulting beat frequency is used to determine the speed of the car.
a.) If Michael is traveling at 29 m/s, what is the resulting beat frequency that the radar gun detects?
ANSWER: 2533 Hz
Explanation:
no, work is = force * distance or displacement
Answer:
Explanation:
Energy of signal being radiated per second on all sides = 71 x 10³ J .
At a distance of 220 m it is spread over an area of 4 π x (220)² because it is spreading uniformly on all sides.
So energy crossing per unit area
= 
= 11.67 x 10⁻² Wm⁻²s⁻¹.
This is the intensity of the signal.
At 2200 m this intensity will further reduce by 100 times
So there it becomes equal to
11.67 x 10⁻⁴ Wm⁻² s⁻¹.